Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/20959
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.advisorSilva, Jonatan Floriano da-
dc.contributor.authorFelício, Milínia Stephanie Nogueira Barbosa-
dc.date.accessioned2016-11-10T12:27:44Z-
dc.date.available2016-11-10T12:27:44Z-
dc.date.issued2016-
dc.identifier.citationFELÍCIO, Milínia Stephanie Nogueira Barbosa. Teorema de Borsut no plano. 2016. 88f. Dissertação (Mestrado em Matemática em Rede Nacional) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2016.pt_BR
dc.identifier.urihttp://www.repositorio.ufc.br/handle/riufc/20959-
dc.description.abstractThis paper deals with the Borsuk Theorem, focusing on dimension 2. The theorem revolves around the question: "What is the smallest number of parts that a region can be divided into, to ensure that in each part the diameter is less than the diameter of the initial region?" Borsuk proves that the required number of divisions in the plan is less than or equal to 3, to ensure smaller diameter regions. In this paper we present a proof for the theorem above. When creating the minicourse “Borsuk Theorem in the Plane” and applying it to senior students from Jenny Gomes State School, it was proposed to review fundamental concepts of students’ prior knowledge in Plane Geometry, determine core deficiencies in these concepts and make students eager to acquire investigation and commitment around the subject, besides handling a content yet-unseen by them, presenting also the historical scenario of the theorem. Students enrolled willingly in the course. For data collection it was used a socioeconomic questionnaire, motivational basis tests and knowledge tests, before and after the course. The Borsuk theorem in the plan makes use only of elementary geometry and can be understood by high school students. New concepts such as diameter of a flat figure, lines of support and Pall Lemma will be presented. It was found that the activity is an effective tool against the disinterest and difficulty of students regarding Geometry.pt_BR
dc.language.isopt_BRpt_BR
dc.subjectTeorema de Borsutpt_BR
dc.subjectGeometria planapt_BR
dc.subjectDiâmetro de figuras planaspt_BR
dc.titleTeorema de Borsuk no planopt_BR
dc.typeDissertaçãopt_BR
dc.description.abstract-ptbrO trabalho versa sobre o Teorema de Borsuk, com ênfase na dimensão 2. O teorema gira em torno da pergunta: “Qual o menor número de partes que podemos dividir uma região, de modo a garantir que em cada parte, o diâmetro seja menor que o diâmetro da região inicial?”. Borsuk prova que o número de divisões necessárias no plano é menor ou igual a 3, a fim de garantir regiões com diâmetros menores. Neste trabalho apresentamos uma prova para o teorema acima. Ao criar o minicurso “Teorema de Borsuk no Plano” e aplicar com alunos do terceiro ano do ensino médio do Colégio Jenny Gomes, propôs-se revisar conceitos fundamentais de conhecimento prévio do aluno em Geometria Plana, diagnosticar deficiências básicas nesses conceitos, despertar a investigação e empenho na disciplina, além de manipular um conteúdo ainda não visto por eles, apresentando-lhes também o cenário histórico do teorema. Os alunos inscreveram-se voluntariamente. Para coleta de dados foram utilizados, um questionário socioeconômico, testes de caráter motivacional e testes de conhecimentos, antes e após o curso. O Teorema de Borsuk no plano faz uso somente de geometria elementar e pode ser compreendido por alunos do ensino médio. Novos conceitos como diâmetro de um figura plana qualquer, retas de apoio e Lema de Pall serão apresentados. Verificou-se que a atividade é uma ferramenta eficaz contra o desinteresse e dificuldade dos alunos em Geometria.pt_BR
dc.title.enBorsuk's theorem in the planept_BR
Aparece nas coleções:PROFMAT - Dissertações defendidas na UFC

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
dis_2016_msnbfelicio.pdf2,47 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.