Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/9589
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.advisorAlmeida, João Marcos-
dc.contributor.authorDodó, Adriano Alves-
dc.date.accessioned2014-10-30T16:43:23Z-
dc.date.available2014-10-30T16:43:23Z-
dc.date.issued2013-
dc.identifier.citationDODÓ, A. A.pt_BR
dc.identifier.urihttp://www.repositorio.ufc.br/handle/riufc/9589-
dc.description.abstractThis thesis is about the enrichment of modal logics. We use the term enrichment in two distinct ways. In the first of them, it is a semantical enrichment. We propose a fuzzy semantics to di erent normal modal logics and we prove a completeness result for a generous class of this logics enriched with multiple instances of the axiom of confluence. A curious fact about this semantics is that it behaves just like the usual boolean-based Kripke semantics for modal logics. The other enrichment is about the expressibility of the logic and it occurs by means of the addition of new connectives, essentially modal negations. In this sense, firstly we study the positive fragment of classical logic extended with a paraconsistent modal negation and we show that this language is su ciently strong to express the normal modal logics. It is also possible to define a paracomplete modal negation and restoration connectives that internalize at the level object-language the notions of consistency and determinedness. This logic constitutes a Logic of Formal Inconsistency and a Logic of Formal Undeterminedness.In such logics, with the objective of recovering lost inferences of classical logic, Derivability Adjustment Theorems are proved. In the case of the logic with one paraconsistent negation, if we remove the implication we still have a rich language, with both paranormal negations and its respective connectives of restoration. In this logic we study the minimal normal modal logic defined by means of a Gentzen calculus, differently of the others modal systems studied, which are presented by means of Hilbert calculus. Next, after we prove a ompleteness result of the deductive system associated to this calculus, we present some extensions of this system and we look for appropriate Derivability Adjustment Theorems.pt_BR
dc.language.isoen_USpt_BR
dc.subjectLógica Modalpt_BR
dc.subjectLógica Paranormalpt_BR
dc.subjectLógica Difusapt_BR
dc.titleOn Rich Modal Logicspt_BR
dc.typeDissertaçãopt_BR
dc.description.abstract-ptbrEsta dissertação trata do enriquecimento de lógicas modais. O termo enriquecimento é usado em dois sentidos distintos. No primeiro deles, de fundo semântico, propomos uma semântica difusa para diversas lógicas modais normais e demonstramos um resultado de completude para uma extensa classe dessas lógicas enriquecidas com múltiplas instâncias do axioma da confluência. Um fato curioso a respeito dessa semântica é que ela se comporta como as semânticas de Kripke usuais. O outro enriquecimento diz respeito à expressividade da lógica e se dá por meio da adição de novos conectivos, especialmente de negações modais. Neste sentido, estudamos inicialmente o fragmento da lógica clássica positiva estendido com uma negação modal paraconsistente e mostramos que essa linguagem é forte o suficiente para expressar as linguagens modais normais. Vemos que também é possível definir uma negação modal paracompleta e conectivos de restauração que internalizam as noções de consistência e determinação a nível da linguagem-objeto. Esta lógica constitui-se em uma Lógica da Inconsistência Formal e em uma Lógica da Indeterminação Formal. Em tais lógicas, com o objetivo de recuperar inferências clássicas perdidas, demonstram-se Teoremas de Ajuste de Derivabilidade. No caso da lógica estendida com uma negação paraconsistente, se removermos a implicação ainda lidaremos com uma linguagem bastante rica, com ambas negações paranormais e seus respectivos conectivos de restauração. Sobre esta linguagem estudamos a lógica modal normal minimal definida por meio de um cálculo de Gentzen apropriado, à diferença dos demais sistemas estudados até então, que são apresentados via cálculo de Hilbert. Em seguida após demonstrarmos a completude do sistema dedutivo associado a este cálculo, introduzimos algumas extensões desse sistema e buscamos Teoremas de Ajuste de Derivabilidade adequados.pt_BR
Aparece nas coleções:CQUIXADA - Dissertações defendidas em outras instituições

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2013_dis_aadodo.pdf748,79 kBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.