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Programa de Pós-Graduação em Sistemas e Computação

Mestrado Acadêmico em Sistemas e Computação

On Rich Modal Logics

Adriano Alves Dodó

Natal-RN

Novembro 2013



Adriano Alves Dodó

On Rich Modal Logics

Dissertação de Mestrado apresentada ao
Programa de Pós-Graduação em Sistemas
e Computação do Departamento de Infor-
mática e Matemática Aplicada da Universi-
dade Federal do Rio Grande do Norte como
requisito parcial para a obtenção do grau de
Mestre em Sistemas e Computação.

Linha de pesquisa:
Fundamentos da Computação

Orientador

Prof. Dr. João Marcos

PPgSC – Programa de Pós-Graduação em Sistemas e Computação
DIMAp – Departamento de Informática eMatemática Aplicada

CCET – Centro de Ciências Exatas e da Terra
UFRN – Universidade Federal do Rio Grande do Norte

Natal-RN

Novembro 2013



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

Catalogação da Publicação na Fonte. UFRN / SISBI / Biblioteca Setorial  

Centro de Ciências Exatas e da Terra – CCET. 

 

 

 

 

 

 

 

 

 

 

Dodó, Adriano Alves. 

On rich modal logics / Adriano Alves Dodó. - Natal, 2013. 

84 f. : il. 

 

Orientador: Prof. Dr. João Marcos. 

 

Dissertação (Mestrado) – Universidade Federal do Rio Grande do Norte. Centro 

de Ciências Exatas e da Terra. Programa de Pós-Graduação em Sistemas e 

Computação. 

 

1. Lógica modal – Dissertação. 2. Lógica paranormal – Dissertação. 3. Lógica 

difusa – Dissertação. I. Marcos, João. II. Título. 

 

RN/UF/BSE-CCET                                                        CDU: 510.643 



Adriano Alves Dodó 

 

  

  On Rich Modal Logics 

 

 
Esta Dissertação foi julgada adequada para a obtenção do título de mestre em 

Sistemas e Computação e aprovado em sua forma final pelo Programa de Pós-

Graduação em Sistemas e Computação do Departamento de Informática e Matemática 

Aplicada da Universidade Federal do Rio Grande do Norte. 

 

 

 

__________________________________________________________ 

João Marcos de Almeida – UFRN 

(Presidente) 

 

 

__________________________________________________________ 

Bruno Motta de Carvalho – UFRN 

(Vice-coordenador do Programa) 

 

 

Banca Examinadora 

 
____________________________________________________ 

João Marcos de Almeida – UFRN 

(Orientador) 

 

 

____________________________________________________ 

Benjamin René Callejas Bedregal – UFRN 

(Examinador) 

 

 

____________________________________________________ 
Cláudia Nalon – UnB 

(Examinador) 

 

____________________________________________________ 
Elaine Gouveia Pimentel – (UFMG) 

(Examinador) 
 

 

Novembro, 2013 



Acknowledgement

I thank to my advisor, João Marcos, for the intellectual support and patience that

devoted me along graduate years. With his friendship, his ability to see problems of

the better point of view and his love in to make Logic, he became a great inspiration

for me.

I thank to my committee members: Claudia Nalon, Elaine Pimentel and Benjamin

Bedregal. These make a rigorous lecture of my work and give me valuable suggestions

to make it better.

I am grateful to the Post-Graduate Program in Systems and Computation that

accepted me as student and provided to me the propitious environment to develop my

research. I thank also to the CAPES for a 21 months fellowship.

Thanks to my research group, LoLITA (Logic, Language, Information, Theory and

Applications). In this group I have the opportunity to make some friends. Someone of

them I knew in my early classes, they are: Sanderson, Haniel and Carol Blasio. Others

I knew during the course, among them I’d like to cite: Patrick, Claudio, Flaulles and

Ronildo.

I thank to Severino Linhares and Maria Linhares who gently hosted me at your

home in my first months in Natal. This couple jointly with my colleagues of student

flat Fernado, Donátila and Aline are my nuclear family in Natal.

I thank my fiancée Luclécia for her precious affective support and to understand

my absence at home during my master. I thank also my parents Manoel and Zenilda,

my siblings Alexandre, Paulo and Paula. Without their confidence and encouragement

I wouldn’t achieve success in this journey.



If you want the hits, be prepared for the misses

Carl Yastrzemski



On Rich Modal Logics

Autor: Adriano Alves Dodó

Orientador(a): Prof. Dr. João Marcos

Resumo

Esta dissertação trata do enriquecimento de lógicas modais. O termo enriquecimento

é usado em dois sentidos distintos. No primeiro deles, de fundo semântico, propo-

mos uma semântica difusa para diversas lógicas modais normais e demonstramos

um resultado de completude para uma extensa classe dessas lógicas enriquecidas

com múltiplas instâncias do axioma da confluência. Um fato curioso a respeito dessa

semântica é que ela se comporta como as semânticas de Kripke usuais. O outro en-

riquecimento diz respeito à expressividade da lógica e se dá por meio da adição de

novos conectivos, especialmente de negações modais. Neste sentido, estudamos ini-

cialmente o fragmento da lógica clássica positiva estendido com uma negação modal

paraconsistente e mostramos que essa linguagem é forte o suficiente para expressar as

linguagens modais normais. Vemos que também é possível definir uma negação modal

paracompleta e conectivos de restauração que internalizam as noções de consistência

e determinação a nível da linguagem-objeto. Esta lógica constitui-se em uma Lógica

da Inconsistência Formal e em uma Lógica da Indeterminação Formal. Em tais lógicas,

com o objetivo de recuperar inferências clássicas perdidas, demonstram-se Teoremas

de Ajuste de Derivabilidade. No caso da lógica estendida com uma negação paracon-

sistente, se removermos a implicação ainda lidaremos com uma linguagem bastante

rica, com ambas negações paranormais e seus respectivos conectivos de restauração.

Sobre esta linguagem estudamos a lógica modal normal minimal definida por meio

de um cálculo de Gentzen apropriado, à diferença dos demais sistemas estudados até

então, que são apresentados via cálculo de Hilbert. Em seguida após demonstrarmos

a completude do sistema dedutivo associado a este cálculo, introduzimos algumas

extensões desse sistema e buscamos Teoremas de Ajuste de Derivabilidade adequados.

Palavras-chave: Lógica Modal, Lógica Paranormal, Lógica Difusa.
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Abstract

This thesis is about the enrichment of modal logics. We use the term enrichment

in two distinct ways. In the first of them, it is a semantical enrichment. We propose a

fuzzy semantics to different normal modal logics and we prove a completeness result

for a generous class of this logics enriched with multiple instances of the axiom of

confluence. A curious fact about this semantics is that it behaves just like the usual

boolean-based Kripke semantics for modal logics. The other enrichment is about the

expressibility of the logic and it occurs by means of the addition of new connectives,

essentially modal negations. In this sense, firstly we study the positive fragment of

classical logic extended with a paraconsistent modal negation and we show that this

language is sufficiently strong to express the normal modal logics. It is also possible

to define a paracomplete modal negation and restoration connectives that internal-

ize at the level object-language the notions of consistency and determinedness. This

logic constitutes a Logic of Formal Inconsistency and a Logic of Formal Undetermined-

ness. In such logics, with the objective of recovering lost inferences of classical logic,

Derivability Adjustment Theorems are proved. In the case of the logic with one para-

consistent negation, if we remove the implication we still have a rich language, with

both paranormal negations and its respective connectives of restoration. In this logic

we study the minimal normal modal logic defined by means of a Gentzen calculus, dif-

ferently of the others modal systems studied, which are presented by means of Hilbert

calculus. Next, after we prove a completeness result of the deductive system associated

to this calculus, we present some extensions of this system and we look for appropriate

Derivability Adjustment Theorems.

Keywords: Modal Logics, Paranormal Logics, Fuzzy Logics.
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1 Introduction

In this Thesis we are interested in modal logics and we investigate some ways of

enriching certain modal logics. These enrichments are done in two distinct ways. The

first of them is a semantical enrichment, in the sense that we adopt a fuzzy Kripke se-

mantics for normal modal logics, instead of the usual Boolean-based Kripke semantics.

The other type of enrichment is linguistic, in the sense that we add new connectives to

the signature of certain logics.

The study of modal logic in the context of fuzzy logics is made in Chapter 2. We

propose a fuzzy semantics in which the operations of T-norm, S-norm, fuzzy negation

and fuzzy implication, that are used to interpret the connectives of the language, take

values on the real interval [0, 1]. Based on the binary partition {[0, i), [i, 1]}, we impose

some restrictions over these fuzzy operations with the aim of obtaining a semantics that

behaves like Boolean-based Kripke semantics. Then, we use this semantics to charac-

terize a minimal normal modal logic and we show how to extend this characterization

to a class of modal logics of confluence, of which many other usual normal modal logics

are particular cases. This investigation resulted in the paper (Dodó; Marcos; Bergamaschi,

2013), where Flaulles Bergamaschi was our co-author, published in the Proceedings of

the 2013 Joint IFSA World Congress NAFIPS Annual Meeting (IFSA/NAFIPS), which

took place in Edmonton, Canada. This paper was based on the early paper (Dodó; Marcos,

2012) published in the Proceedings of the CBSF 2012.

With respect to the linguistic enrichment we essentially study logics that have modal

negations among their connectives. Traditionally, normal modal logics are presented in

terms of the modalities2 and ♦, that are instances of positive modalities. Is it possible to

present modal normal logics in terms of negative modalities? One affirmative answer

for this question is given by Marcos in (Marcos, 2005a). In this work the usual normal

modal logics are obtained from a paranormal logic (a paracomplete and paraconsistent

logic) with the help of connectives of restoration that internalize at the object-language

level the notions of consistency and determinedness. Indeed this logic, under specific
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conditions, constitutes a Logic of Formal Inconsistency (LFI) and a Logic of Formal

Undeterminedness (LFU) too. In such logics the paranormal negations fail some clas-

sical inferences, that can be recovered by means of so-called Derivability Adjustment

Theorems (DAT). These theorems say basically that adding adequate assumptions of

both consistency and determinedness the logic can recover the lost inferences from

classical logic.

In (Marcos, 2005a), Marcos extends the positive fragment of classical logic (where

the binary connectives ∧, ∨ and ⊃ represent conjunction, disjunction and implication

respectively) with two connectives, one of them being a paraconsistent negation and the

other a consistency connective. This language is sufficiently expressive to characterize

every normal modal logic in the standard signature containing the connectives ∧,∨,⊃,

2 and 3. In what follows the author proposes an extension with a determinedness

connective and a paracomplete negation instead of a consistency connective and a

paraconsistent negation. However, in this case, the logic is able to express the same

normal modal logics in the signature 〈∧,∨,⊃,2,3〉 only for extensions of the logic KT.

Another result says that the usual normal modal logics are definable already from a logic

that extends the classical positive logic only with a paraconsistent negation. A similar

result can be obtained, if it is used a paracomplete negation instead a paraconsistent

negation, for extensions of the logic KT. In the latter case, however, if one uses a

coimplication instead an implication the result holds for every normal modal logic.

In the same work, Marcos sketches an axiomatization, in terms of a Hilbert Calculus,

for a normal minimal logic using only the positive fragment of classical logic and a

paraconsistent negation. The author suggests, although he does not show the proofs

of completeness, how to axiomatize other modal systems. Based on these ideas, in the

Chapter 3 of the present thesis, we study logics under this axiomatization: the LAB

logics. We prove completeness results for the minimal LAB logic and some extension

of it. As we will show, it is possible to define the positive modalities 2 and ♦ in these

logics. This confirms the fact that normal modal logics can be alternatively presented

by means of negative modalities.

In the case of the classical positive logic extended with a paraconsistent negation,

what does happen if we remove the implication from the language? In Chapter 4 we

will answer that question: we still have a rich language, with two paranormal negations

and its respective connectives of restoration. And more, this logic is both an LFI and an

LFU. In Chapter 4 we also present definitions of the positive and negative modalities,
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and of corresponding connectives of restoration in terms of Universal Logic. We define

a deductive system for this minimal system by means of a Gentzen calculus, calledKn,

instead of a Hilbert style system. InKn, besides the usual structural rules and the rules

for classical conjunction and classical disjunction, we have rules for the connectives

of restoration and rules for the interaction between our modal negations. A Kripke

semantics is proposed for our modal logic and we prove that our deductive system is

sound and complete with respect to this semantics. After this, two extensions ofKn are

studied. One of them is characterized by the class of reflexive frames and the other by

the class of symmetric frames. Finally we study how the inferences of more standard

logic systems may be recovered with the use of our rich modal language, by way of

appropriate DATs. The ideas developed in this chapter resulted in the paper (Dodó;

Marcos, 2014), that was published in Electronic Notes in Theoretical Computer Science.

Chapters 2 and 4 has structure similar to the papers published in the above men-

tioned vehicles. We preserve the same division of sections. However, particularly in

chapter 2 we add full proofs of some results, that were omitted in the original papers

by reasons of space limitations. We also add some definitions and more details of the

subjects thereby explained.
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2 Confluence in Fuzzy Modal Logic

In this chapter, we investigate classic-like aspects of Kripke models endowed with

a fuzzy accessibility relation and a fuzzy notion of satisfaction. We prove general

completeness result concerning the fuzzy semantics of a generous class of normal

modal systems enriched with multiple instances of the axiom of confluence.

2.1 Introduction

With different goals, several papers in the literature have proposed to ‘modalize’

fuzzy logics or to ‘fuzzify’ modal logics. In (Mironov, 2005), for instance, the author aims

at constructing logical calculi with languages appropriate for specifying dynamical

systems whose behavior and structure is only modeled approximately. Other authors

are also interested in providing adequate axiomatizations for such logics. For example,

in (Caicedo; Rodriguez, 2010) the authors provide an axiomatization for the 2-fragment

and the ♦-fragment of the so-called Gödel modal logics, based on the many-valued

Gödel logic and some well-known logics from the literature on modal logics. In (Bou et

al., 2011) the authors characterize minimal many-valued modal logics for a 2 operator

defined over finite residuated lattices. All papers cited above have one thing in common:

the semantical framework used to characterize the modal systems is based on Kripke-

style structures.

The semantics that we utilize here is also a many-valued Kripke-style semantics.

Our particular aim, though, is to characterize a generous class of many-valued modal

systems with locally bivalent semantics that behave just like the usual boolean-based

Kripke semantics for modal logics. In (Bedregal et al., 2011), the authors study models for

a certain kind of fuzzy modal logics and prove weak completeness results for a couple

of modal extensions of classic-like fuzzy models of some traditional normal modal

systems, viz. K, T, D, B, S4, and S5. In (Dodó; Marcos, 2012) we followed a similar thread
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to prove completeness results for a much more inclusive class of fuzzy normal modal

systems which contain instances of the axiom of confluence (Gk,l,m,n) ♦k2lϕ ⊃ 2m♦nϕ,

where k, l,m and n are natural numbers. It should be clear that the systems K + Gk,l,m,n

encompass the above traditional systems, and a lot else. Indeed, one may observe that

the characteristic modal axioms (T) 2ϕ ⊃ ϕ, (D) 2ϕ ⊃ ♦ϕ, (B) ϕ ⊃ 2♦ϕ, (4) 2ϕ ⊃ 22ϕ

and (5) ♦ϕ ⊃ 2♦ϕ are particular instances of (Gk,l,m,n) where 〈k, l,m,n〉 are 〈0, 1, 0, 0〉,

〈0, 1, 0, 1〉, 〈0, 0, 1, 1〉, 〈0, 1, 2, 0〉 and 〈1, 0, 1, 1〉, respectively.

In our preliminary study, (Dodó; Marcos, 2012), we have followed (Bedregal et al., 2011)

in producing for the real-valued unit interval [0, 1] the ‘canonical’ binary partition

{[0, 1), [1, 1]} and in putting certain restrictions on the fuzzy operators which we have

used to interpret the connectives of our language. Notions of satisfaction and validity

of a formula are straighforwardly defined based on this partition. A weak completeness

result was then established for a large class of modal systems. In the present Chapter,

our ‘crisp semantics’ is more general: instead {[0, 1), [1, 1]}we use a partition {[0, i), [i, 1]},

with i , 0. We have shown, then, how to extend the completeness result for a much

larger class of classic-like fuzzy modal logics.

The so-called Geach axiom (G1,1,1,1) is well-known to characterize, in terms of the

associated notion of accessibility (and its inversef) in the corresponding Kripke

frames, the diamond property, namely: if y f x z, then there is some w such that

y  w f z. As noted in (Lemmon; Scott, 1977), where i
 denotes an i-long sequence

of transitions (and similarly for i
f andf transitions), the natural generalization of

the diamond property is the following 〈k, l,m,n〉-confluence property : if y k
f x l

 z,

then there is some w such that y m
 w n

f z. From the logical viewpoint, a general com-

pleteness proof based directly on the axiom of confluence, thus, is attractive in having

the potential to subsume a denumerable number of particular instances of (Gk,l,m,n). At

any rate, it should be noted that the confluence property has importance on its own. In

abstract rewriting systems and type theory, for instance, one deals with frames in which

accessibility characterizes some appropriate notion of reduction. There, confluence is

used together with termination to guarantee convergence of reductions, which on its

turn guarantees the existence of normal forms and has applications on the design of

decision procedures. Strong normalization, in particular, is a much desirable property

of lambda calculi, and is a property guaranteed by theorems of confluence à la Church-

Rosser, with applications to programming language theory. The availability of modal

logics of confluence, and in fact of fuzzy versions of such logics, allows one to expect to

have a local perspective on rewrite systems and on program evaluation, and this time
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imbued with varying degrees of uncertainty, customized to the user’s discretion.

The plan of the Chapter is as follows: in Section 2.2 we introduce the usual fuzzy

operators; in section 2.3 we present the concept of classic-like fuzzy semantics and show

that there exist fuzzy logics with the same set of tautologies of classical propositional

logic; in Section 2.4 we present a particular kind of fuzzy Kripke semantics for modal

logics; in Section 2.5 we prove completeness results for the modal system K extended

with instances of the axiom of confluence.

2.2 Fuzzy Operators

We first review some useful terminology and easy results:

Definition 2.2.1. Throughout the Chapter we shall use O to denote the boolean domain {0, 1}

of classical logic, andU to denote the unit interval [0, 1], typical of fuzzy logics. By ≤ we will

always denote the natural total order on U. Given a k-ary operator c©b on O and a k-ary

operator c©u onU, we shall say that c©u agrees with c©b if c©u|O = c©b. Given some i ∈ U\{0},

we will use Π to denote the partition {Π0,Π1} ofU, where Π0 = [0, i) and Π1 = [i, 1].

We list in what follows the defining properties of the most standard fuzzy operators

used to interpret their homonymous classical counterparts, some references for these

definitions are ((Hájek, 1998), (Klement; Mesiar; Pap, 2000)).

Definition 2.2.2. A fuzzy conjunction, or t-norm, is a binary operation T onU such that:

(T0) T agrees with classical conjunction, (T1) T is commutative, (T2) T is associative, (T3) T is

monotone, that is, order-preserving, on both arguments, and (T4) T has 1 as neutral element.

We call x ∈ U a Π0-divisor of a t-norm T if there exists some y ∈ U such that T(x, y) ∈ Π0;

such Π0-divisor is called non-trivial if both x, y ∈ Π1. We say that T is left-continuous if it

preserves limits of non-decreasing sequences, that is, if limn→∞ T(xn, y) = T(limn→∞ xn, y), for

every non-decreasing sequence {xn}n∈N.

For every left-continuous t-norm T there is a unique binary operation RT on U,

called the residuum of T, such that T(x, z) ≤ y iff z ≤ RT(x, y) for all x, y and z ∈ U .

The following are examples of t-norms.

• Godel t-norm: TG(x, y) = min(x, y)

• Drastic t-norm: TD(x, y) =

 min(x, y), if max(x, y) = 1

0, otherwise
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Definition 2.2.3. A fuzzy disjunction, or s-norm, is a binary operation S on U such that:

(S0) S agrees with classical disjunction, (S1) S is commutative, (S2) S is associative, (S3) S is

monotone on both arguments, and (S4) S has 0 as neutral element. We call x ∈ U a Π1-divisor

of a s-norm S if there exists some y ∈ U such that S(x, y) ∈ Π1; such Π1-divisor is called

non-trivial if both x, y ∈ Π0.

Some examples of s-norms are:

• Godel s-norm: SG(x, y) = max(x, y)

• Drastic s-norm: SD(x, y) =

 max(x, y), if min(x, y) = 0

1, otherwise

Some easily checkable important derived properties of the above operators include:

Proposition 2.2.1. For any t-norm T, s-norm S, and every x, y ∈ U:

(i) If T(x, y) ∈ Π1, then x ∈ Π1 and y ∈ Π1.

(ii) If S(x, y) ∈ Π0, then x ∈ Π0 and y ∈ Π0.

Proof. For part (i), as y ≤ 1, by (T3) it follows that T(x, y) ≤ T(x, 1). But by (T4) we have

T(x, 1) = x, so we conclude that (a) T(x, y) ≤ x. Similarly, we see that (b) T(x, y) ≤ y.

From (a) and (b) it follows that T(x, y) ≤ min(x, y). Since T(x, y) ∈ Π1, then i ≤ T(x, y).

So, i ≤ min(x, y). From this we conclude that x ≥ i and y ≥ i, that is, x ∈ Π1 and y ∈ Π1.

For part (ii) we have that 0 ≤ x and 0 ≤ y. Then, by (S3), it follows that S(x, 0) ≤ S(x, y)

and S(y, 0) ≤ S(x, y). From this and (S4), max(x, y) ≤ S(x, y). Since S(x, y) ∈ Π0, then

x, y ∈ Π0. QED

Note that small1 t-norms such as the ‘drastic t-norm’ fail the converse of Prop. 2.2.1(i).

Dually, large2 s-norms such as the ‘drastic s-norm’ fail the converse of Prop. 2.2.1(ii). It

is interesting to observe the following:

Proposition 2.2.2. Let T be a t-norm, and S be an s-norm. Then:

(i) If T lacks non-trivial Π0-divisors, then x ∈ Π1 and y ∈ Π1 imply T(x, y) ∈ Π1, for every

x, y ∈ U.

(ii) If S lacks non-trivial Π1-divisors, then x ∈ Π0 and y ∈ Π0 imply S(x, y) ∈ Π0, for every

x, y ∈ U.

1In the sense that is the pointwise smallest t-norm. That is TD(x, y) ≤ T(x, y) for every t-norm T.
2In the sense that is the pointwise largest s-norm. That is S(x, y) ≤ SD(x, y) for every s-norm S.
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Proof. For part (i) suppose by contraposition that T(x, y) ∈ Π0 for some x, y ∈ U. Since

T has only trivial Π0-divisors, then x ∈ Π0 or y ∈ Π0.

For part (ii) suppose also by contraposition that S(x, y) ∈ Π1. Since S has only trivial

Π1-divisors, then x ∈ Π1 or x ∈ Π1. QED

Definition 2.2.4. A fuzzy negation is a unary operation N on U such that: (N0) N agrees

with classical negation, (N1) N is antitone, that is, order-reversing.

Definition 2.2.5. A fuzzy implication is a binary operation I onU such that: (I0) I agrees

with classical implication, (I1) I is antitone on the first argument, and (I2) I is monotone on the

second argument.

Given that the unit interval U = [0, 1] is closed and bounded, the Bolzano-

Weierstrass theorem guarantees that:

Proposition 2.2.3. The image of a left-continuous t-norm is complete (in the sense that its

subsets contain their own suprema).

Proof. Let T be a t-norm, S be a closed subset ofU×U and M be the supremum of T(S),

T(S) is a subset ofU that collects the images of all elements of S. This supremum must

exist because S is bounded. We will show that there is a z ∈ S such that T(z) = M. Pick an

arbitrary sequence {yn}n∈N of elements in the range of T that converges to M. For each n,

let xn be an element of S such that yn = T(xn). Then, the sequence {T(xn)}n∈N converges

to M. Let now {xnk}k∈N be a convergent non-decreasing subsequence of {xn}n∈N, and

let z = limk→∞ xnk . This is guaranteed to exist by the Bolzano-Weierstrass theorem. We

conclude that z ∈ S, given than S is closed. Given that T is left-continuous, we have that

T(z) = T(limk→∞ xnk) = limk→∞ T(xnk) = limn→∞ T(xn) = M. QED

Residuation allows us to define a particularly interesting kind of fuzzy implication:

Proposition 2.2.4. The residuum I of a left-continuous t-norm is a fuzzy implication. Moreover,

I(x, y) = 1 iff x ≤ y.

2.3 Fuzzy Semantics

Let P be a denumerable set of propositional variables, and let the set of formulas of

classical propositional logic, LP, be inductively defined by:
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ϕ ::= p | (¬ϕ) | (ϕ1 ∧ ϕ2) | (ϕ1 ∨ ϕ2) | (ϕ1 ⊃ ϕ2)

where p ranges over elements of P.

The following definition employs the standard fuzzy operators in interpreting the

above symbols for the classical connectives:

Definition 2.3.1. A fuzzy evaluation of the propositional variables is any total function

e : P −→ Π0 ∪ Π1. The structure S = 〈N,T,S, I〉 will be called a fuzzy semantics for the

propositional connectives 〈¬,∧,∨,⊃〉. By way of a fuzzy semantics, an evaluation e may be

recursively extended to a fuzzy valuation eS : LP −→ Π0 ∪Π1 as follows:

eS(p) = e(p) for each p ∈ P

eS(¬α) = N(eS(α))

eS(α ∧ β) = T(eS(α), eS(β))

eS(α ∨ β) = S(eS(α), eS(β))

eS(α ⊃ β) = I(eS(α), eS(β))

A formula α ∈ LP is called an S-tautology, denoted by �S α, if for every fuzzy evaluation e

we have eS(α) ∈ Π1. We shall denote by T(LP) the set of all classical tautologies in LP and by

TS(LP) the set of all S-tautologies in LP.

The fact that each fuzzy operator agrees with the corresponding classical operator

immediately guarantees the following result:

Proposition 2.3.1. All fuzzy tautologies are classical tautologies, that is, TS(LP) ⊆ T(LP), for

any fuzzy semantics S.

The following definitions, from (Bedregal; Cruz, 2008), and the subsequent result aim

at capturing the core of classical semantics from within the context of fuzzy semantics:

Definition 2.3.2. S is a classic-like fuzzy semantics if T(LP) ⊆ TS(LP).

Definition 2.3.3. Let S = 〈N,T,S, I〉 be a fuzzy semantics and Π be a partition forU. We say

that: (1) N is crisp with respect to Π when N(x) ∈ Π0 if and only if x ∈ Π1; (2) T is crisp

with respect toΠwhen T(x, y) ∈ Π1 if and only if x, y ∈ Π1; (3) S is crisp with respect toΠ

when S(x, y) ∈ Π0 if and only if x, y ∈ Π0; (4) I is crisp with respect to Π when I(x, y) ∈ Π0

if and only if x ∈ Π1 and y ∈ Π0. When the above conditions are all satisfied we say that S is

Π-crisp.
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Notice in particular that crisp t-norms and crisp s-norms are fully characterized by

Prop. 2.2.1 and Prop. 2.2.2. Part of what it takes for a fuzzy implication to be crisp is also

guaranteed by Prop. 2.2.4. To show now that a Π-crisp fuzzy semantics is a classic-like

fuzzy semantics we prove first the following result.

Proposition 2.3.2. Given a fuzzy valuation eS of a Π-crisp fuzzy semantics S, there is a classical

valuation v : LP −→ O that simulates it, that is, such that

v(ϕ) = 1 iff eS(ϕ) ∈ Π1

holds for every ϕ ∈ LP.

Proof. Let [ : U −→ O be such that [(x) = 1 if x ∈ Π1 and [(x) = 0 otherwise. We

will show that v = [ ◦ eS defines a standard boolean valuation. The base step is trivial.

In the inductive step, for the case of a negated formula ¬ψ, note that v(¬ψ) = 1 iff

[(eS(¬ψ)) = 1 iff eS(¬ψ) ∈ Π1 iff N(eS(ψ)) ∈ Π1. As S is Π-crisp, N(eS(ψ)) ∈ Π1 iff

eS(ψ) ∈ Π0. The induction hypothesis applies to ψ, thus we conclude that eS(ψ) ∈ Π0 iff

v(ψ) = 0. From all this we conclude that v(¬ψ) = 1 iff v(ψ) = 0, exactly as one would

expect of the standard classical semantics of negation. The cases of the remaining

operators are analogous. QED

Corollary 2.3.1. All classical tautologies are tautologies of a Π-crisp fuzzy semantics, that is,

S is a classic-like fuzzy semantics whenever S = 〈N,T,S, I〉 is Π-crisp.

Proof. Consider a classical tautology ϕ, and pick an arbitrary fuzzy valuation eS. In

view of Prop. 2.3.2, there is a classical valuation v that simulates eS. But the formula ϕ

is a tautology, so v must satisfy it, hence eS must equally satisfy this formula. QED

2.4 Fuzzy Kripke Semantics

The set of modal formulas, LMP, is defined by adding (♦φ) to the inductive clauses

defining LP. The connective 2may be introduced by definition, setting 2α := ¬♦¬α.

Definition 2.4.1. Generalizing the notion of a characteristic function to the domain of fuzzy

logic, a fuzzy n-ary relation B over a universe A is characterized by a membership function

µB : An
−→ U which associates to each tuple −→x ∈ An its degree of membership µB(−→x ) in B.

In this context, a fuzzy subset is characterized by a fuzzy unary relation, or the corresponding

unary membership function. A crisp n-ary relation is any fuzzy n-ary relation B over a given A

such that µB(An) ⊆ O, and crisp sets are defined analogously.
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In the following, definitions of standard Kripke models are fuzzified:

Definition 2.4.2. A fuzzy frame F is a structure 〈W, 〉, where W is a non-empty crisp

set (of ‘objects’, ‘worlds’, or ‘states’) and is a fuzzy binary (‘reduction’, ‘accessibility’, or

‘transition’) relation over W. As expected, to characterize m-step accessibility, m
 , we set:

• µ 0
 

(wi,w j) ∈ Π1 means that wi = w j

• µn+1
 

(wi,w j) ∈ Π1 means that there is some wk such thatµ n
 

(wi,wk) ∈ Π1 andµ (wk,w j) ∈

Π1

Furthermore, wi
m
f w j is used to denote w j

m
 wi.

Definition 2.4.3. Given a fuzzy frameF, anF-evaluation is any total function ρ : P×W −→

U. A fuzzy Kripke model is a structureK = 〈F, S,V〉, whereF is a fuzzy frame, S is a classic-

like fuzzy semantics where T is a left-continuous t-norm and V is anF-valuation. Given a fuzzy

Kripke modelK , the associated degree of satisfiability is a total function
K : W×LMP −→ U

recursively defined as follows (in infix notation, we write w 
K ϕ where w ∈W and ϕ ∈ LMP;

when there is no risk of ambiguity, we use more simply w 
 ϕ instead of w 
K ϕ):

w 
 α = V(α,w), if α ∈ P

w 
 ¬α = N(w 
 α)

w 
 α ∧ β = T(w 
 α,w 
 β)

w 
 α ∨ β = S(w 
 α,w 
 β)

w 
 α ⊃ β = I(w 
 α,w 
 β)

w 
 ♦α = sup{T(µ (w,w′),w′ 
 α)/w′ ∈W}

w 
 2α = N(w 
 ♦¬α)

A formula ϕ ∈ LMP is said to be true in a fuzzy Kripke model K , denoted by �K α, if

(w 
 ϕ) ∈ Π1 for every w ∈ W. Given a collection K of fuzzy Kripke models, a formula

ϕ ∈ LMP is said to be a K-tautology (denoted by �K ϕ), if ϕ is true in every model in K.

Note that the above notion of satisfaction coincides with the standard interpretation

in modal logics based on the standard bivalent semantics, with the fuzzy operators

collapsing into their counterparts in classical logic, and with the interpretations of ♦

and 2 coinciding with their standard interpretations in Kripke semantics.

Many standard properties of binary relations like



21

reflexivity xRx for all x

seriality for every x there exist y such that xRy

symmetry if xRy, then yRx, for all x, y

transitivity if xRy and yRz, then xRz, for all x, y and z

euclideanity if xRy and xRz, then yRz, for all x, y and z

have natural fuzzy counterparts, as shown in the next definition.

Definition 2.4.4. We say the fuzzy accessibility relation is:

• Π-reflexive if µ (x, x) ∈ Π1, for every x ∈W

• Π-serial for every x ∈W there exists y ∈W such that µ (x, y) ∈ Π1

• Π-symmetric if µ (x, y) ∈ Π1 implies µ (y, x) ∈ Π1, for every x, y ∈W

• Π-transitive if µ 2
 

(x, y) ∈ Π1 implies µ (x, y) ∈ Π1 for every x, y ∈W

• Π-euclidean if µ (x, y) ∈ Π1 and µ (x, z) ∈ Π1 imply µ (y, z) ∈ Π1 for every

x, y, z ∈W

In general, given natural numbers k, l,m,n, we say that  is Π-(k,l,m,n)-confluent if for

each x, y, z ∈ W such that µ k
 

(x, y) ∈ Π1 and µ m
 

(x, z) ∈ Π1 there exists w ∈ W such that

µ l
 

(y,w) ∈ Π1 and µ n
 

(z,w) ∈ Π1.

2.5 Modal Systems Based on Instances of Gk,l,m,n

We will show that normal modal systems based on instances of Gk,l,m,n can be charac-

terized by adequate fuzzy Kripke models. First of all, we will prove the completeness of

the K-Modal System with respect to the class all fuzzy Kripke models. Next, we will en-

rich this system with one or more instances of Gk,l,m,n and prove a general completeness

result for the systems thereby obtained.

Given a fuzzy Kripke modelM = 〈W, , S,V〉, in what follows letMC bet the crisp

fuzzy model 〈W, C, S,V〉, associated toMwhere µ C : W ×W −→ O is such that

µ C(w,w′) =

 1, if µ (w,w′) ∈ Π1

0, if µ (w,w′) ∈ Π0

and VC : P×W −→ O is such that VC(p,w) = 1 if V(p,w) ∈ Π1 and VC(p,w) = 0 otherwise.
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The following result shows that each fuzzy modal semantics may be assumed to be

based on a convenient crisp accessibility relation.

Proposition 2.5.1. LetM = 〈W, , S,V〉 be a fuzzy Kripke model. Given an arbitrary w ∈W

and α ∈ LMP, then (w 
M α) ∈ Π1 iff (w 
MC α) = 1, where MC is the crisp fuzzy model

associated toM.

Proof. This is checked by induction on the structure of α.

[Base step] α is some p ∈ P

(w 
M p) ∈ Π1 iff, by Def. 2.4.3, V(p,w) ∈ Π1 iff, by definition of VC , VC(p,w) = 1 iff

(w 
MC p) = 1.

[Step] Suppose, by Induction Hypothesis, that (w 
M β) ∈ Π1 iff (w 
MC β) = 1.

We will check in detail the case where α = ♦β. Suppose first that (w 
M ♦β) ∈ Π1.

Then, sup{T(µ (w,w′),w′ 
M β) : w′ ∈ W} ∈ Π1. From 2.2.3 there exists w∗ such that

T(µ (w,w∗),w∗ 
M β) ∈ Π1. By Prop. 2.2.1 µ (w,w∗) ∈ Π1 and (w∗ 
M β) ∈ Π1. By

definition ofMC it’s the case that µ C(w,w∗) = 1 and by Induction Hypothesis (w∗ 
MC

β) = 1. By the standard interpretation of ♦, it follows that (w 
MC ♦β) = 1. Conversely,

using the fact that T is crisp with respect to Π, we can prove that if (w 
MC ♦β) = 1, then

(w 
M ♦β) ∈ Π1. QED

As a straightforward consequence, it follows that:

Corollary 2.5.1. Given an arbitrary fuzzy Kripke modelM and α ∈ LMP, then �M α iff �MC α.

2.5.1 The K-Modal System

Definition 2.5.1. The K-modal system is the triple 〈LMP,∆ ∪ {(K)}, {(MP), (Nec)}〉, where ∆

is an axiomatization of Classical Propositional Logic, (K) is the axiom

2(α ⊃ β) ⊃ (2α ⊃ 2β)

and (MP) and (Nec) are respectively the rules of Modus Ponens and Necessitation, namely:

(MP) :
α, α ⊃ β

β and
(Nec) :

` α
` 2α

Proposition 2.5.2. Let α ∈ LMP. Then, α is a theorem in the K-modal system iff �K α for each

fuzzy Kripke modelK = 〈W, , S,V〉.
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Proof. (⇒) We already know, by Corollary 2.3.1, that the theorems of classical logic are

all valid in any classic-like fuzzy semantics. It remains to be proven that the axiom (K) is

valid and that the inferences rules preserve validity. Suppose that there exists a w ∈W

such that (w 
 2(α ⊃ β) ⊃ (2α ⊃ 2β)) ∈ Π0. So by Def. 2.3.3 it follows that

(w 
 2(α ⊃ β)) ∈ Π1 (2.1)

and

(w 
 2α ⊃ 2β) ∈ Π0 (2.2)

By (2.2) and Def. 2.3.3, we have

(w 
 2α) ∈ Π1 (2.3)

and

(w 
 2β) ∈ Π0 (2.4)

By (2.4) and Def. 2.4.3,

N(sup{T(µ (w,w′),N(w′ 
 β))/w′ ∈W}) ∈ Π0 (2.5)

By (2.5) and Def. 2.3.3, we have

sup{T(µ (w,w′),N(w′ 
 β))/w′ ∈W} ∈ Π1 (2.6)

By (2.6) and Prop. 2.2.3 there exists a w∗ ∈W such that

T(µ (w,w∗),N(w∗ 
 β)) ∈ Π1 (2.7)

By (2.7) and the Prop. 2.2.1, we have

µ (w,w∗) ∈ Π1 (2.8) and N(w∗ 
 β) ∈ Π1 (2.9)

From (2.9), by Def. 2.3.3 we know that

(w∗ 
 β) ∈ Π0 (2.10)

By (2.1) and Def. 2.4.3,

sup{T(µ (w,w′),N(w′ 
 α ⊃ β))/w′ ∈W} ∈ Π0 (2.11)

By (2.11) and (2.8) in particular when w′ = w∗we have N(w∗ 
 α ⊃ β)) ∈ Π0, by Def. 2.3.3,
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that is,

(w∗ 
 α ⊃ β) ∈ Π1 (2.12)

Using (2.3), (2.8) and Def. 2.3.3, analogously we conclude that

(w∗ 
 α) ∈ Π1 (2.13)

By (2.12), (2.13) and the interpretation of classic-like fuzzy implication it follows that

(w∗ 
 β) ∈ Π1 (2.14)

But (2.14) contradicts (2.10) given that {Π0,Π1} is a partition.

For (Nec) Rule assume that �K β„ that is, for all w, (w 
 β) ∈ Π1. Suppose by

contradiction that �K 2β is not the case. So there exists a w ∈ W such that (w 
 2β) ∈

Π0, that is, N(sup{T(µ (w,w′),N(w′ 
 β))/w′ ∈ W}) ∈ Π0. It follows by Def. 2.3.3

that sup{T(µ (w,w′),N(w′ 
 β))/w′ ∈ W} ∈ Π1. For some w∗ ∈ W it is the case that

T(µ (w,w∗),N(w∗ 
 β)) ∈ Π1. From this we conclude that (w′ 
 β) ∈ Π0, contradicting

the assumption.

For (MP) Rule assume for an arbitrary w that (w 
 ϕ) ∈ Π1 and (w 
 ϕ ⊃ ψ) ∈ Π1.

Suppose again by contradiction that (w 
 ψ) ∈ Π0. Since (w 
 ϕ) ∈ Π1, by Def. 2.3.3 it

follows that I(w 
 ϕ,w 
 ψ) ∈ Π0, that is (w 
 ϕ ⊃ ψ) ∈ Π0. This is an absurd.

(⇐) The K system is known to be complete with respect the class of all Kripke

models. So, by Corollary 2.5.1, if �K α then `K α. QED

2.5.2 Completeness of KGk,l,m,n

In what follows, we shall prove a sequence of lemmas which are used to establish

the soundness result in Theorem 2.5.1.

Lemma 2.5.1. LetM = 〈W, , S,V〉 be a fuzzy Kripke model. If (w 
 ♦zϕ) ∈ Π1, then there

exists a wz such that both µ z
 

(w,wz) ∈ Π1 and (wz 
 ϕ) ∈ Π1.

Proof. The proof proceeds by induction on z.

[Basis] z = 1

If (w 
 ♦β) ∈ Π1, then sup{T(µ (w,w′),w′ 
 β)/w′ ∈ W} ∈ Π1, by Def. 2.4.3. So, by

Prop. 2.2.3 there is a w1 ∈W such that T(µ (w,w1),w1 
 β) ∈ Π1. By Prop. 2.2.1 we have

µ (w,w1) ∈ Π1 and (w1 
 β) ∈ Π1.
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[Step] Suppose by Induction Hypothesis that for z = k the property is valid. Note that

if (w 
 ♦k+1β) ∈ Π1, then, by Def. 2.4.3,

sup{T(µ (w,w′),w′ 
 ♦kβ)/w′ ∈W} ∈ Π1 (2.15)

From (2.15) and Prop. 2.2.3 there exists a w1 such that

T(µ (w,w1),w1 
 ♦
kβ) ∈ Π1 (2.16)

By (2.16) and Prop. 2.2.1 we have:

µ (w,w1) ∈ Π1 (2.17)

and

(w1 
 ♦
kβ) ∈ Π1 (2.18)

By (2.18) and Induction Hypothesis it follows that there exists a wk′ such that

µ k
 

(w1,wk′) ∈ Π1 and (wk′ 
 β) ∈ Π1. Using (2.17) and setting wk+1 = wk′ we conclude

that µk+1
 

(w,wk+1) ∈ Π1 and (wk+1 
 β) ∈ Π1. QED

Lemma 2.5.2. Let M = 〈W, , S,V〉 be a fuzzy Kripke model. If µ m
 

(w, v) ∈ Π1 and (w 


2mϕ) ∈ Π1, then (v 
 ϕ) ∈ Π1.

Proof. The proof is carried out by induction on m.

[Basis] m = 1. Assume that:

µ (w, v) ∈ Π1 (2.19)

and

(w 
 2β) ∈ Π1 (2.20)

By (2.20), Def. 2.3.3 and Def. 2.4.3 we have that

T(µ (w, v),N(v 
 β)) ∈ Π0 (2.21)

By (2.19), (2.21) and Def. 2.3.3 we have that N(v 
 β) ∈ Π0. By Def. 2.3.3 it follows that

(v 
 β) ∈ Π1.

[Step] m = k + 1

The (IH) Induction Hypothesis states that for m = k, if µ k
 

(w, v) ∈ Π1 and (w 
 2kβ) ∈ Π1

then (v 
 β) ∈ Π1.

Assume that

µk+1
 

(w, v) ∈ Π1 (2.22)
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and

(w 
 2k+1β) ∈ Π1 (2.23)

It follows from (2.23), Def. 2.3.3 and Def. 2.4.3 that

sup{T(µ (w,w′),N(w′ 
 2kβ))/w′ ∈W} ∈ Π0 (2.24)

On the other hand, for every w′ ∈W we have

T(µ (w,w′),N(w′ 
 2kβ)) ∈ Π0 (2.25)

By (2.22) there is a v1 such that µ (w, v1) ∈ Π1 and

µ k
 

(v1, v) ∈ Π1 (2.26)

For such v1 it is thus the case that T(µ (w, v1),N(v1 
 2kβ)) ∈ Π0. Since µ (w, v1) ∈ Π1

theni it follows by the latter and Def. 2.3.3 that

(v1 
 2kβ) ∈ Π1 (2.27)

We conclude by (2.26), (2.27) and from the Induction Hypothesis that (v 
 β) ∈ Π1.

QED

The following result concerns equivalences between formulas with nested modali-

ties. It will be useful in the proofs of propositions where formulas that contains iterated

2 and ♦.

Lemma 2.5.3. IfM = 〈W, , S,V〉 is a fuzzy Kripke model, and w is a element of W, then

(w 
 ¬♦mϕ) ∈ Π1 iff (w 
 2m
¬ϕ) ∈ Π1.

Proof. This is checked by induction on m.

[Basis] m = 1
w 
 ¬♦ϕ ∈ Π1 iff (by Definition 2.4.3)

N(sup{T(µ (w,w′),w′ 
 ϕ)w′ ∈W}) ∈ Π1 iff (by Def. 2.3.3)

sup{T(µ (w,w′),w′ 
 ϕ)/w′ ∈W} ∈ Π0 iff

µ (w,w′) ∈ Π0 or (w′ 
 ϕ) ∈ Π0 for all w′ iff (by Def. 2.4.3 and Def. 2.3.3)

µ (w,w′) ∈ Π0 or (w′ 
 ¬¬ϕ) ∈ Π0 iff

sup{T(µ (w,w′),w′ 
 ¬¬ϕ)/w′ ∈W} ∈ Π0 iff

(w 
 ♦¬¬ϕ) ∈ Π0 iff (by Def. 2.3.3)

N(w 
 ♦¬¬ϕ) ∈ Π1 iff (by Def. 2.4.3)

(w 
 2¬ϕ) ∈ Π1
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[Step] m = k + 1

Assume by Induction Hypothesis that (w 
 ¬♦kϕ) ∈ Π1 iff (w 
 2k
¬ϕ) ∈ Π1

Note that w 
 ¬♦k+1ϕ ∈ Π1 iff (by Def. 2.4.3 and Def. 2.3.3)

w 
 ♦k+1ϕ ∈ Π0 iff (by Def. 2.4.3)

sup{T(µ (w,w′),w′ 
 ♦kϕ)/w′ ∈W} ∈ Π0 iff

µ (w,w′) ∈ Π0 or (w′ 
 ♦kϕ) ∈ Π0 for all w′ iff

µ (w,w′) ∈ Π0 or (w′ 
 ¬♦kϕ) ∈ Π1 iff (by Induction Hypothesis)

µ (w,w′) ∈ Π0 or (w′ 
 2k
¬ϕ) ∈ Π1 iff

µ (w,w′) ∈ Π0 or N(w′ 
 2k
¬ϕ) ∈ Π0 iff

µ (w,w′) ∈ Π0 or (w′ 
 ¬2k
¬ϕ) ∈ Π0 iff

sup{T(µ (w,w′),w′ 
 ¬2k
¬ϕ)/w′ ∈W} ∈ Π0 iff (by Def. 2.4.3)

(w 
 ♦¬2k
¬ϕ) ∈ Π0 iff (by Def. 2.3.3)

N(w 
 ♦¬2k
¬ϕ) ∈ Π1 iff (by Def. 2.4.3)

(w 
 22k
¬ϕ) ∈ Π1 iff

(w 
 2k+1
¬ϕ) ∈ Π1

QED

Lemma 2.5.4. Let M = 〈W, , S,V〉 be a fuzzy Kripke model. If (w 
 ¬♦nϕ) ∈ Π1 and

µ n
 

(w, v) ∈ Π1, then (v 
 ϕ) ∈ Π0.

Proof. This is a straightforward consequence of the previous results. Indeed, note first

that by Lemma 2.5.3 we have (v 
 ¬♦mϕ) ∈ Π1 iff (v 
 2m
¬ϕ) ∈ Π1. So we know that

(w 
 2n
¬ϕ) ∈ Π1 and µ n

 
(w, v) ∈ Π1, and by applying Lemma 2.5.2 it follows that

(v 
 ¬ϕ) ∈ Π1. By Def. 2.3.3 we conclude that (v 
 ϕ) ∈ Π0. QED

Lemma 2.5.5. LetM = 〈W, , S,V〉 be a fuzzy Kripke model. If (w 
 2nϕ) ∈ Π0, then there

exists some wn such that µ n
 

(w,wn) ∈ Π1 and (wn 
 ¬ϕ) ∈ Π1.

Proof. This is checked by induction on n. The basis is straightforward using Def. 2.4.3.

Assume by Induction Hypothesis that if (w 
 2kϕ) ∈ Π0, then there exists w1 such that

µ k
 

(w,w1) ∈ Π1 and (w1 
 ¬ϕ) ∈ Π1.

Suppose that (w 
 2k+1ϕ) ∈ Π0. From this, Def. 2.3 and Def. of 2 It follows that

(w 
 ♦¬2kϕ) ∈ Π1 (2.28)

By (2.28) and Prop. 2.2.3 there exists w1 such that

µ 1
 

(w,w1) ∈ Π1 (2.29)
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and (w1 
 ¬2kϕ) ∈ Π1. Since S is a Π-crisp, then (w1 
 2kϕ) ∈ Π0. From the latter

and Induction Hypothesis there exists wk+1 such that µ k
 

(w1,wk+1) ∈ Π1 and (wk+1 


¬ϕ) ∈ Π1. With the help of(2.29) the latter is the same that µ k
 

(w,wk+1) ∈ Π1 and

(wk+1 
 ¬ϕ) ∈ Π1. QED

The following lemma shows that the axiom Gk,l,m,n is sound with respect fuzzy

Kripke models in which is Π-(k, l,m,n)-confluent:

Lemma 2.5.6 (Soundness Lemma). If α is a formula of form Gk,l,m,n and G is a fuzzy Kripke

model where is Π-(k, l,m,n)-confluent, then �G α.

Proof. Let α be ♦k2lβ ⊃ 2m♦nβ. Suppose that (w 
G ♦k2lβ ⊃ 2m♦nβ) ∈ Π0 for some

w ∈W. Then by Def. 2.3.1

(w 
G ♦k2lβ) ∈ Π1 (2.30)

and

(w 
G 2m♦nβ) ∈ Π0 (2.31)

By (2.30) and Lemma 2.5.1 there exists a wk such that

µ k
 

(w,wk) ∈ Π1 (2.32)

and

(wk 
G 2lβ) ∈ Π1 (2.33)

By (2.31) and Lemma 2.5.5 there exists a wm such that

µ m
 

(w,wm) ∈ Π1 (2.34)

and

(wm 
G ¬♦
nβ) ∈ Π1 (2.35)

By (2.32), (2.34) and the appropriate instance of the Π-confluence property of there

exists a x ∈W such that

µ l
 

(wk, x) ∈ Π1 (2.36)

and

µ n
 

(wm, x) ∈ Π1 (2.37)

By (2.33), (2.36) and Lemma 2.5.2 we conclude that

(x 
G β) ∈ Π1 (2.38)



29

By (2.35), (2.37) and Lemma 2.5.4, on the other hand, we conclude that

(x 
G β) ∈ Π0 (2.39)

Note that (2.39) contradicts (2.38). QED

Theorem 2.5.1. For any α ∈ LMP, we have that α is a theorem of KGk,l,m,n iff �KG α for each

fuzzy Kripke modelKG = 〈W, , S,V〉 such that is Π-(k, l,m,n)-confluent.

Proof. (⇒) Let α be a theorem of the KGk,l,m,n and KGk,l,m,n be a fuzzy Kripke model

where  is Π-(k, l,m,n)-confluent. We will prove that �KG α. In view of Prop. 2.5.2,

however, it is sufficient to check the case where α is an instance of the Gk,l,m,n-axiom,

i.e., to check that (w 
KG ♦k2lβ ⊃ 2m♦nβ) ∈ Π1 for each w ∈ W and β ∈ LMP, but from

the Lemma 2.5.6 it is immediate.

(⇐) In (Lemmon; Scott, 1977) the completeness of system KGk,l,m,n with respect the class

of models that satisfies the confluence accessibility relation is established. By Corol-

lary 2.5.1 it follows that the system KG is complete with respect the KGk,l,m,n system.

So, if �KG β then `KG β. QED

The completeness results proven in Prop. 2.5.1 can be shown to hold not only for

singular instances of Gk,l,m,n, but also for several such instances combined. Indeed:

Proposition 2.5.3. Let Gk1,l1,m1,n1 , . . . ,Gkp,lp,mp,np be instances of the schema Gk,l,m,n. Let K +

Gk1,l1,m1,n1 + . . . + Gkp,lp,mp,np be the system which results from extending K with Gk1,l1,m1,n1 ,

. . . ,Gkp,lp,mp,np . A formula α is a theorem of K + Gk1,l1,m1,n1 + . . . + Gkp,lp,mp,np iff �KG+ α for

each fuzzy Kripke model KG+ = 〈W, , S,V〉 such that is Π-(k1, l1,m1,n1)-confluent, . . .,

Π-(kp, lp,mp,np)-confluent.

Proof. (⇒) By Theorem 2.5.1 this result is valid for K + Gk1,l1,m1,n1 . If we add Gk2,l2,m2,n2 and

use Lemma 2.5.6 we can conclude that K + Gk1,l1,m2,n2 + Gk2,l2,m2,n2 is sound in all fuzzy

Kripke models such that is (k1, l1,m1,n1)-confluent and (k2, l2,m2,n2)-confluent. Using

the same reasoning we can extend the result for each system K+Gk1,l1,m1,n1 +. . .+Gkp,lp,mp,np .

(⇐) From Corollary 2.5.1 this proof is analogous to the proof of completeness for

extensions of K with finitely many instances of Gk,l,m,n, as done, e.g., in (Pizzi; Carnielli,

2008). QED

Notice that the completeness of the modal systems KT, KB and KD, for instance,

are direct consequences of Theorem 2.5.1, while the completeness of B, S4 and S5, for
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instance, follows from Prop. 2.5.3. To illustrate, we show how obtain completeness for

S5 (we use below⇒ and & for the classical metalinguistic implication and conjunction).

Example 2.5.1. S5 is complete with respect all Π-reflexive and Π-euclidean fuzzy Kripke mod-

els. The modal system S5 is axiomatized by K, T and 5, i.e. K + 〈0, 1, 0, 0〉+ 〈1, 0, 1, 1〉. But

 is Π-〈1, 0, 1, 1〉-confluent iff (by Definition 2.4.4) ∀x∀y∀z((µ (x, y) ∈ Π1 & µ (x, z) ∈

Π1)⇒ ∃w(y = w & µ (z,w) ∈ Π1)) iff for arbitrary x, y, z ∈ W we have that (µ (x, y) ∈

Π1 & µ (x, z) ∈ Π1) ⇒ (µ (z, y) ∈ Π1) iff ∀x∀y∀z(µ (x, y) ∈ Π1 & µ (x, z) ∈ Π1) →

(µ (z, y) ∈ Π1)) iff (by Definition 2.4.4) is Π-euclidean. Furthermore, using a similar

reasoning we note that  is Π1-〈0, 1, 0, 0〉-confluent iff ∀x∀y∀z((x = y & x = z) →

∃w(µ (y,w) ∈ Π1 & z = w)) iff ∀x(µ (x, x) ∈ Π1) iff is Π-reflexive. So, by Theorem

2.5.3 follows the completeness of K + 〈0, 1, 0, 0〉+ 〈1, 0, 1, 1〉with respect all fuzzy Kripke

models that are Π-reflexive and Π-euclidean.

2.6 Final Remarks

In this Chapter we generalize scattered results from (Bedregal et al., 2011) to a much

more inclusive collection of modal logics, and also greatly generalizes our previous

approach in (Dodó; Marcos, 2012) by the consideration of other classic-like partitions of

the interval [0, 1] as [0, i) ∪ [i, 1]. The partition presupposed by most fuzzy logics in

the literature takes i = 1, a constraint which seems by all means unnecessary. Fur-

thermore, adapting the previous results to partitions of the form [0, i] ∪ (i, 1] requires

straightforward modifications to the above.

We believe it is possible to study a multimodal (diamond) version of the axiom of

confluence by adding appropriate indices to the modalities, at the linguistic level, and

adding corresponding fuzzy accessibility relations, at the semantic level (in such case,

the initial case with iterated modalities will accordingly be reduced to distinct one-step

modalities). Completeness should in this case be attainable, as in the case of normal

modal logics extending classical logic, by adding appropriate interaction axioms. We

also conjecture that the above results on the axiom of confluence and its corresponding

collection of frames may be extended to every Sahlqvist-definable frame class. This

thread of investigation, however, shall be left as matter for future work.
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3 LAB Logics

Here we present the LAB logics1, a family of modal logics that has a primitive

paraconsistent negation among its connectives. We propose an axiomatization for the

minimal LAB logics. Next we prove completeness results for this logic and some exten-

sions of it. The modalities 2 and ♦ and restoration connectives can be defined in LAB

logics.

3.1 The regular LAB logics

Let S∨∧⊃` be the language inductively defined over a set of denumerable proposi-

tional variables P as follows:

ϕ ::= p | (ϕ ∨ ϕ) | (ϕ ∧ ϕ) | (ϕ ⊃ ϕ) | (`ϕ)

where p ∈ P and ϕ is a formula.

In this language, with the help of classical implication, we may define the following

connectives:
⊥

de f
= `(ϕ ⊃ ϕ)

∼ϕ
de f
= ϕ ⊃ ⊥

The regular LAB logic is obtained by adding to a complete set of axioms and rules

of inference for positive classical propositional logic the axiom

(A1) ` `(α ∧ β) ⊃ (`α ∨ `β)

and the inference rules:

(R1) If ` α ⊃ β then ` `β ⊃ `α

(R2) If ` α, then ` `α ⊃ β

1The name LAB is a reference to the word Laboratory. I think that the work of defining a logic is
similar to the one done in an Laboratory, in the sense that we experiment with different definitions and
we adjust several times the logical structures to achieve some desired results.
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This logic, from now on will be called K`. Let Γ ∪ {α} be a set of formulas. We say

that α is derivable in a logicL over S∨∧⊃`, denoted by Γ `L α, if there is a finite sequence

ϕ1, ϕ2, . . . , ϕn, n ∈ N, of formulas of S∧∨⊃` such that ϕn is α and for every 1 ≤ i ≤ n one

of the following conditions hold:

(i) ϕi is an instance of an axiom;

(ii) ϕi ∈ Γ (ϕi is a hypothesis);

(iii) ϕi follows from an application of an inference rule on premises that appears before

line i.

We say that a formula ϕ is a theorem of a logicL, denoted by `L ϕ, if α is derived from

the empty set of premisses. We denote the set of theorems of L by Th(L). By Γ 0L α we

denote that α is not derivable from Γ in L.

A form of the Deduction Metatheorem may be proven for LAB logics.

Proposition 3.1.1. (MTD) Let α and β be formulae of S∧∨⊃` and Γ ⊆ S∧∨⊃`. Given a derivation

for Γ, α ` β, it is possible to build a derivation for Γ ` α ⊃ β.

Proof. See Appendix A. QED

Based in the above axiomatization we can prove for every regular LAB logicL that:

Proposition 3.1.2.

1. ` ⊥ ⊃ β

2. ` α ⊃ (∼α ⊃ β) (Principle of Explosion)

3. ` α ∨ ∼α (Principle of Implosion)

4. (∼α ⊃ β) ⊃ ((∼α ⊃ ∼β) ⊃ α)

5. ` `(β1 ∧ β2 ∧ . . . ∧ βn) ⊃ `β1 ∨ `β2 ∨ . . . ∨ `βn, for n ≥ 2.

6. ∼∼α ` α

7. If Γ, α ` ⊥, then Γ ` ∼α

8. α,∼α ` ⊥
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Proof. In the proofs below [PC] represents an instance of a theorem of classical propo-

sitional logic, while [MP i, j] represents an application of Modus Ponens on the formulas

in the lines i and j. A formula justified by [ Def. of 	 in i ], where 	 ∈ {∼,⊥}, follows

from Definition of 	 on the formula that appears in the previous line i.

For (1) consider the following derivation:
1. ϕ ⊃ ϕ [PC]

2. `(ϕ ⊃ ϕ) ⊃ β [(R2) on 1]

3. ⊥ ⊃ β [Def. of ⊥ in 2]

For (2) consider the following derivation:
1. α ⊃ ((α ⊃ ⊥) ⊃ ⊥) [PC]

2. ⊥ ⊃ β [Prop. 3.1.2.1]

3. (α ⊃ ((α ⊃ ⊥) ⊃ ⊥)) ⊃ ((⊥ ⊃ β) ⊃ (α ⊃ ((α ⊃ ⊥) ⊃ β)) [PC]

4. (⊥ ⊃ β) ⊃ (α ⊃ ((α ⊃ ⊥) ⊃ β)) [MP 1, 3]

5. α ⊃ ((α ⊃ ⊥) ⊃ β) [MP 2, 4]

6. α ⊃ (∼α ⊃ β) [Def. ∼ in 5]

For (3) consider the below derivation:
1. α ∨ (α ⊃ ⊥) [PC]

2. α ∨ ∼α [Def. ∼ in 1]

For (4) consider the following derivation:

1. ∼α ⊃ β [Hyp]

2. ∼α ⊃ ∼β [Hyp]

3. ∼α [Hyp]

4. β [MP 1, 3]

5. ∼β [MP 2, 3]

6. β ⊃ (∼β ⊃ α) [Prop. 3.1.2.2 ]

7. ∼β ⊃ α [MP 4, 6]

8. α [MP 5, 7]

Thus, ∼α ⊃ β,∼α ⊃ ∼β,∼α ` α. By MTD it follows that ∼α ⊃ β,∼α ⊃ ∼β ` ∼α ⊃ α.

From the later there is a derivationDwith Hypothesis ∼α ⊃ β,∼α ⊃ ∼β and conclusion

∼α ⊃ α, that is:
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1. ∼α ⊃ β [Hyp]

2. ∼α ⊃ ∼β [Hyp]
...

j. ∼α ⊃ α [Justification]

Consider the following derivation obtained by appending some lines toD:

1. ∼α ⊃ β [Hyp]

2. ∼α ⊃ ∼β [Hyp]
...

j. ∼α ⊃ α [Justification]

j+1. α ⊃ α [PC]

j+2. (α ⊃ α) ⊃ ((∼α ⊃ α) ⊃ ((α ⊃ α) ∧ (∼α ⊃ α))) [PC]

j+3. (∼α ⊃ α) ⊃ ((α ⊃ α) ∧ (∼α ⊃ α)) [MP j+1, j+2 ]

j+4. (α ⊃ α) ∧ (∼α ⊃ α) [MP j, j+3 ]

j+5. ((α ⊃ α) ∧ (∼α ⊃ α)) ⊃ ((∼α ∨ α) ⊃ α) [PC]

j+6. (∼α ∨ α) ⊃ α [MP j+4, j+5 ]

j+7. ∼α ∨ α [Prop. 3.1.2.3]

j+8. α [MP j+6, j+7 ]

We conclude that ∼α ⊃ β,∼α ⊃ ∼β ` α. By applying twice MTD, it follows that

` (∼α ⊃ β) ⊃ ((∼α ⊃ ∼β) ⊃ α).

The proof of (5) follows from a induction on the size of n. The basis step, k = 2, is justi-

fied by the axiom (A1). Assume by Induction Hypothesis that ` `(β1 ∧ β2 ∧ . . . ∧ βk) ⊃

`β1 ∨ `β2 ∨ . . . ∨ `βk for an arbitrary k. The following derivation concludes the proof:
1. `((β1 ∧ β2 ∧ . . . ∧ βk) ∧ βk+1) ⊃ `(β1 ∧ β2 ∧ . . . ∧ βk) ∨ `βk+1 [(A1)]

2. `(β1 ∧ β2 ∧ . . . ∧ βk) ⊃ `β1 ∨ `β2 ∨ . . . ∨ `βk [I.H.]

3. (`(β1 ∧ β2 ∧ . . . ∧ βk) ⊃ (`β1 ∨ `β2 ∨ . . . ∨ `βk)) ⊃

((`(β1 ∧ β2 ∧ . . . ∧ βk) ∨ `βk+1) ⊃ ((`β1 ∨ `β2 ∨ . . . ∨ `βk) ∨ `βk+1)) [PC]

4. (`(β1 ∧ β2 ∧ . . . ∧ βk) ∨ `βk+1) ⊃ (`β1 ∨ `β2 ∨ . . . ∨ `βk ∨ `βk+1) [MP 2, 3]

5. `(β1 ∧ β2 ∧ . . . ∧ βk ∧ βk+1) ⊃ (`β1 ∨ `β2 ∨ . . . ∨ `βk ∨ `βk+1) [1, 4 and transi-

tivity of ⊃]

For (6) consider the following derivation:
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1. ∼∼α [Hyp]

2. (∼α ⊃ ∼α) ⊃ ((∼α ⊃ ∼∼α) ⊃ α) [Prop. 3.1.2.4 ]

3. ∼α ⊃ ∼α [PC]

4. (∼α ⊃ ∼∼α) ⊃ α [MP 2, 3]

5. ∼∼α ⊃ (∼α ⊃ ∼∼α) [PC]

6. ∼α ⊃ ∼∼α [MP 1, 4]

7. α [MP 4, 6]
Thus, ∼∼α ` α.

For (7) assume that Γ, α ` ⊥, applying MTD we obtain that Γ ` α ⊃ ⊥, by definition of

∼, that is Γ ` ∼α.

The derivation below justifies the item (8):
1. α [Hyp]

2. ∼α [Hyp]

3. α ⊃ ⊥ [Def. of ⊥ in 2]

4. ⊥ [MP 1, 3]
Thus, α,∼α ` ⊥. QED

The connective ∼ is like a classical negation since, by Prop. 3.1.2, ∼ satisfies both

the principle of explosion and principle of implosion with respect the consequence

relation `.

LetL be a modal logic and ∆ be a set of formulas. We say that the set of formulas ∆

is L-coherent if ∆ 0L ⊥, otherwise ∆ is called L-incoherent.

Lemma 3.1.1. If ∆ is a L-coherent set of formulas and ϕ a formula then:

1. ∆ ∪ {ϕ} or ∆ ∪ {∼ϕ} is L-coherent

Proof. Assume that ∆ is a L-coherent and suppose, by contradiction, that both sets

∆∪ {ϕ} and ∆∪ {∼ϕ} areL-incoherent. It follows that ∆, ϕ ` ⊥ and ∆,∼ϕ ` ⊥. From the

latter and Prop. 3.1.2.7 we have that (i) ∆ ` ∼ϕ and (ii) ∆ ` ∼∼ϕ respectively. Since, by

Prop. 3.1.2.2, ∆ ` ∼ϕ ⊃ (∼∼ϕ ⊃ ⊥), using (i), (ii) and MP we conclude that ∆ ` ⊥, which

contradicts our initial assumption. QED

We say that ∆ is L-maximal coherent if ∆ is L-coherent and

1. α ∈ ∆ or ∼α ∈ ∆, for every α ∈ S∧∨⊃`
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The following properties can be checked for any set of L-maximal coherent sets of

formulas.

Proposition 3.1.3. If L is a LAB logic and Γ is L-maximal coherent, then:

1. Th(L)⊆ Γ

2. Γ is closed under Modus Ponens

3. α ∨ β ∈ Γ iff α ∈ Γ or β ∈ Γ

Proof. (1) Assume that there isϕ ∈Th(L) such thatϕ < Γ. Since Γ isL-maximal coherent,

then ∼ϕ ∈ Γ. Now, consider the following derivation:
1. ϕ [Theorem of L ]

2. ∼ϕ [Hypothesis]

3. ϕ ⊃ (∼ϕ ⊃ ⊥) [Theorem of L ]

4. ∼ϕ ⊃ ⊥ [MP 1, 3]

5. ϕ ⊃ (∼ϕ ⊃ ⊥) [MP 2, 4]
We conclude from this that ∼ϕ ` ⊥. Since ∼ϕ ∈ Γ, then Γ ` ⊥. This contradicts the

L-maximal coherency of Γ.

(2) Assume that α, α ⊃ β ∈ Γ. Suppose, by contradiction, that β < Γ. Since Γ isL-maximal

coherent, then∼β ∈ Γ. From the Prop. 3.1.3.1 the theorem of classical propositional logic

(α ⊃ β) ⊃ (∼β ⊃ ∼α) is also in Γ. By MP and Prop. 3.1.2.8 the set {α, α ⊃ β,∼β} ⊆ Γ derives

⊥ by MP. Thus, Γ is L-incoherent, which is an absurd.

(3) Assume that α∨ β ∈ Γ and suppose, by contradiction, that both α, β < Γ. From this it

follows, by the L-maximality of Γ, that ∼α,∼β ∈ Γ. From the Prop. 3.1.3.1 the classical

theorem ∼α ⊃ (∼β ⊃ ∼(α ∨ β)) ∈ Γ. The set {α ∨ β,∼α,∼β,∼α ⊃ (∼β ⊃ ∼(α ∨ β))} ⊆ Γ, by

MP and Prop. 3.1.2.8, derives ⊥. This contradicts the fact that Γ is L-coherent. QED

Lemma 3.1.2. [Extension Lemma] If Γ′ is an L-coherent set of formulas, then there is a

L-maximal coherent set of formulas Γ such that Γ′ ⊆ Γ.

Proof. Let E = (ϕ1, ϕ2, . . . , ϕn, . . .) be an enumeration of the formulas of S∧∨⊃`. Define

the following sequence of sets:
Γ0 = Γ′

Γn+1 =

 Γn ∪ {ϕn}, if Γn ∪ {ϕn} is L-coherent

Γn, otherwise
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The proof that each of the sets Γi isL-coherent proceeds by induction. The basis step

is immediate, since Γ0 = Γ′. Suppose by Induction Hypothesis that Γn is L-coherent.

The set Γn+1 is either Γn∪{ϕn+1} or Γn. In the first case Γn+1 isL-coherent by construction,

while in the second case Γn+1 is L-coherent by Induction Hypothesis.

We claim that Γ =
⋃

i≥0 Γi is L-maximal coherent. Suppose that Γ is not L-coherent.

Then there is a finite set {ϕm0 , . . . , ϕmt} such that ϕm0 , . . . , ϕmt ` ⊥, that is {ϕm0 , . . . , ϕmt}

is L-incoherent. We have that {ϕm0 , . . . , ϕmt} ⊆ Γi for some i sufficiently large, thus Γi is

L-incoherent. This an absurd, since each Γi is L-coherent.

Now we prove the L-maximality of Γ. Suppose that ϕi < Γ for some ϕi in E. By

construction the set Γi∪ {ϕi} is notL-coherent. By Lemma 3.1.1 Γi∪ {∼ϕi} isL-coherent.

According the enumeration ϕ j = ∼ϕi, for some j , i. We have to consider two cases:

[ j < i]

In this case we have that Γ j+1 = Γ j ∪ {ϕ j}. The set Γ j+1 is L-coherent. Otherwise Γi ⊇ Γ j

is L-incoherent. Thus, ∼ϕi ∈ Γ.

[ j > i]

In this case Γi ⊆ Γ j. From this we have that Γ j ∪ {ϕi} is L-incoherent. By Lemma 3.1.1

Γ j ∪ {∼ϕi} is L-coherent. The latter set is the same as Γ j+1. Since Γ j+1 ⊆ Γ, then ∼ϕi ∈ Γ.

We conclude from the above that ϕ or ∼ϕ ∈ Γ for every ϕ ∈ E. QED

In Section 3.2 we present some extensions of the minimal LAB logics.

3.2 Other LAB Systems

In Table 1 we list some axioms. In section 3.4 we shall show that each of them

corresponds to some specific property on the class of frames where it is valid.

(D`) `⊥
(T`) `α ∨ α
(B`) ``α ⊃ α
(4`) `β ⊃ (`α ∨ ``α)
(5`) `α ⊃ (``α ⊃ β)

Table 1: Some axioms

The system K^ extended with some of the axioms in Table 1 originates other

systems, some of which are illustrated in Table 2:
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KT` K` + (T`)
KB` K` + (B`)
S4` K` + (T`) + (4`)
S5` K` + (T`) + (5`)

Table 2: Some systems

3.3 Semantics

A frameF = 〈W,R〉 is a structure where W is a non-empty set, the set of worlds, and

R is a binary relation on W. A modelM = 〈F ,V〉 is an interpretation structure defined

over a frame where V : W × P −→ {0, 1}. The notion of satisfiability of a formula at a

world in a model is defined as follows:

M,w 
 p iff V(w, p) = 1

M,w 
 α ∨ β iff V(w, α) = 1 or V(w, β) = 1

M,w 
 α ∧ β iff V(w, α) = 1 and V(w, β) = 1

M,w 
 α ⊃ β iff V(w, α) = 0 or V(w, β) = 1

M,w 
 `α iff (∃v ∈W)(wRv &M, v 1 α)

We writeM,w 1 α to say that V(w, α) = 0. This notion of satisfiability permit us to

prove the following proposition.

Proposition 3.3.1. For any modelM = 〈W,R,V〉 and w ∈W:
1. M,w 1 ⊥

2. M,w 
 ∼α iff V(w, α) = 0

3. M,w 
 ∼`α iff (∀v ∈W)( if wRv , thenM, v 
 α)

4. M,w 
 `∼α iff (∃v ∈W)(wRv &M, v 
 α)

Proof. (1) Assume by contradiction thatM,w 
 ⊥. By Def. of ⊥ this is the same that

M,w 
 `(p ⊃ p). From the latter and the interpretation of ` there is a world u such that

M,u 1 p ⊃ p. At u we have thatM,u 1 p andM,u 
 p. This is an absurd.

(2) By Def. of ∼ we have that M,w 
 ∼α iff M,w 
 α ⊃ ⊥. From the latter and the

interpretation of implication it follows thatM,w 1 α orM,w 
 ⊥. Since, from 3.3.1.1,

M,w 1 ⊥we have thatM,w 1 α, i.e., V(w, α) = 0 .

(3)M,w 
 ∼`α iff, by the previous item 2,M,w 1 `α. This is, by interpretation of `,

the same as (∀v ∈W)( if wRv , thenM, v 
 α).
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(4) M,w 
 `∼α iff, by interpretation of `, (∃v ∈ W)(wRv & M, v 1 ∼α) iff (∃v ∈

W)(wRv &M, v 
 α).

QED

A formula ϕ is valid in a frame F , denoted by F 
 ϕ, iffM, x 
 ϕ for every world

x in every modelM based on F . A formula ϕ is valid in a class F of frames, denoted by

|=F ϕ, iff is valid in every frame of F. We say that a set of formulas Γ entails a formula

ϕ, denoted by Γ |= ϕ when for every modelM and for every world w inM eitherM

falsifies some formula of Γ at w orM satisfies ϕ at w.

Let ] be a unary connective. We say that ] is a paraconsistent negation when there

is a model that satisfies the formula ϕ∧ ]ϕ for some formula ϕ and falsifies some other

formula. We say that ] is a paracomplete negation when there is a model that falsifies

the formula ϕ ∨ ]ϕ for some formula ϕ and satisfies some other formula. If a negation

is both paraconsistent and paracomplete, then it is a paranormal negation. Based on

this and on the semantics presented above we can prove the following result:

Lemma 3.3.1.

1. ` is a paranormal negation;

Proof. To show that ` is a paraconsistent negation consider the modelM = 〈W,R,V〉

such that W = {w,u}, V(w, p) = 1, V(u, p) = 0 and wRu. Since wRu andM,u 1 p, then

M,w 
 `p. From the latter and the fact thatM,w 
 p, we conclude thatM,w 
 p∧`p.

The modelM = 〈W,R,V〉, where W = {w},V(w, p) = 0 and R = ∅ , can be used to prove

that ` is a paracomplete negation. QED

According to the next proposition the axioms and rules of K` are valid with respect

this semantics. We say that an inference rule preserves validity if whenever that its

premisses are valid on a frame, then its consequence is also valid on this frame.

Proposition 3.3.2. [Soundness] The logic K` is sound for frame validity.

Proof. For (A1) suppose that 6|= `(α ∧ β) ⊃ (`α ∨ `β). Then, there is a model M =

〈W,R,V〉 and a world w inM such thatM,w 1 `(α∨β) ⊃ (`α∨`β). From this it follows

that (i)M,w 
 `(α ∧ β) and also thatM,w 1 `α ∨ `β, that is, (ii)M,w 1 `α and (iii)

M,w 1 `β. By (i) there is a world u such that wRu and (iv)M,u 1 α∧β. In u, by (ii) and
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(iii), we have thatM satisfies both α and β at u, that is,M,u 
 α ∧ β. This contradicts

(iv).

For the rule (R1) assume thatF 
 α ⊃ β and suppose by contradiction thatF 1 `β ⊃ `α.

From the latter it follows that (i)M,w 
 `β and (ii)M,w 1 `α for some world w at

some modelM. By (i) there is a world u such that wRu and (iii)M,u 1 β. Since wRu,

by (ii), it follows thatM,u 
 α. From this and (iii) we have thatM,u 1 α ⊃ β. Thus,

F 1 α ⊃ β. This contradicts our initial assumption.

For (R2) assume that F 
 α and suppose by contradiction that F 1 `α ⊃ β. From the

latter there must be a a modelM and a world w such thatM,w 
 `α andM,w 1 β.

From the latter, there is a world u accessible from w such that M,u 1 α. This is an

absurd since F 
 α. QED

In next section the canonical model construction is used to prove the desired com-

pleteness results.

3.4 Completeness

The canonical model is the structureMC = 〈WC,RC,VC〉, where:

1. WC is the set of K`-maximal coherent extensions

2. wRCu iff c[w] ⊆ u where c[w] = {ϕ : `ϕ < w}

3. For every propositional variable p, VC(w, p) = 1 iff p ∈ w

Lemma 3.4.1. In the canonical model if `α ∈ w, then there is v such that wRCv and α < v.

Proof. Assume that `α ∈ w. Let v′ be a set such that v′ = {∼α} ∪c[w]. We claim that v′ is

K`-coherent. Otherwise there is (a) {β1, β2, . . . , βn} ⊆ c[w] such that β1, β2, . . . , βn,∼α ` ⊥.

By Prop. 3.1.2.7 it follows that β1, β2, . . . , βn ` ∼∼α. Since ∼∼α ` α (Prop. 3.1.2.6) it

follows that β1, β2, . . . , βn ` α. From this we have that ` (β1 ∧ β2 ∧ . . . ∧ βn) ⊃ α. By

(R1), this implies that (b) ` `α ⊃ `(β1 ∧ β2 ∧ . . . ∧ βn). Now, by Prop. 3.1.2.5 we know

that (c) ` `(β1 ∧ β2 ∧ . . . ∧ βn) ⊃ `β1 ∨ `β2 ∨ . . . ∨ `βn. From (b), (c) and transitivity

of classical implication we have that ` `α ⊃ `β1 ∨ `β2 ∨ . . . ∨ `βn. It follows that

`β1 ∨ `β2 ∨ . . . ∨ `βn ∈ w. By Prop. 3.1.3 it follows that `βi ∈ w for some 1 ≤ i ≤ n,

that is, βi < c[w]. This contradicts (a). So, since v′ is K`-coherent then, by the Extension

Lemma, we can extend v′ to a K`-maximal coherent v such that v′ ⊆ v. Since ∼α ∈ v, by
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Prop. 3.1.3 it follows that α < v. It remains to prove that wRCv. For this take an arbitrary

ϕ ∈ c[w]. Then, by construction of v, it follows that ϕ ∈ v. QED

Lemma 3.4.2. For every w ∈WC and every ϕ,

MC,w 
 ϕ iff ϕ ∈ w.

Proof. The proof is by induction on the structure of ϕ. The base step is immediate from

the definition of canonical model. Suppose by Induction Hypothesis that for all w in

WC and for a certain ψ we have that MC,w 
 ψ iff ψ ∈ w. We shall check the case where

ϕ is `ψ. From the left to right assume thatMC,w 
 `ψ. Then there is v such that wRCv

and MC, v 1 ψ. From the latter it follows by Induction Hypothesis that ψ < v, since

wRCv, then `ψ ∈ w. Conversely, assume that `ψ ∈ w, by Lemma 3.4.1 there is v such

that wRCv and ψ < v, and that means precisely thatMC,w 
 `ψ. QED

Let F be the class of all frames. We will prove the following completeness result:

Proposition 3.4.1 (Completeness). If Γ |=F α, then Γ `K` α.

Proof. Suppose, by contraposition that Γ 0K` α. Then, the set Γ ∪ {∼α} is coherent. By

Proposition 3.1.3 we can extend Γ ∪ {∼α} to a maximal coherent set w. Since ∼α ∈ w,

then α < w. By Lemma 3.4.2, in the canonical model,MC,w 1 α. Thus, Γ 6|= α. QED

The logic K` is the minimal LAB logics in the sense that it is complete with respect

the class of all frames. In what follows we prove that the axioms listed in Table 1 cor-

respond to certain properties over the class of frames.

Proposition 3.4.2.

1. F 
 (D`) iff F is serial.

2. F 
 (T`) iff F is reflexive.

3. F 
 (B`) iff F is symmetric.

4. F 
 (4`) iff F is transitive.

5. F 
 (5`) iff F is euclidean.
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Proof. In what follows let F = 〈W,R〉 be an arbitrary frame.

(1) Assume that F is serial. Suppose by contradiction that F 1 `⊥. Then, there is a

modelM and a world w such thatM,w 1 `⊥. Since R is serial, for some v, wRv. In v

we have thatM, v 
 ⊥. This is a contradiction. For the other direction, suppose that F

is not serial. Then, there is a world w, such that w does not access another world. At

w all formulas of the form `α are falsified at w. For every modelM, based on F , that

contains w we have thatM,w 1 `⊥. Thus, F 1 `⊥.

(2) Assume that F is reflexive. Suppose by contradiction that F 1 `p ∨ p. Then, there

exists a model M and a world w such that M,w 1 `p ∨ p. From the later it follows

that (i)M,w 1 `p and (ii)M,w 1 p. Since wRw, by (i), we have thatM,w 
 p. Which

contradicts (ii). For the other direction assume that F is not reflexive, that is 〈x, x〉 <W

for some x. Let M1 = 〈W,R,V1〉 be the model where V1(x, p) = 0 and V1(u, p) = 1 for

every u such that xRu. Since V1(x, p) = 0, then (iii)M1, x 1 p. By construction of V1 and

interpretation of `, it follows that (iv)M1, x 1 `p. So, by (iii) and (iv),M1, x 1 p ∨ `p.

(3) Assume that F is symmetric. Suppose, by contradiction, that F 1 ``p ⊃ p. Then,

there exists a w in a modelM such thatM,w 1 ``p ⊃ p. That is, (i)M,w 
 ``p and (ii)

M,w 1 p. By (i) it follows that wRu and (iii)M,u 1 `p for some u. SinceF is symmetric,

uRw. From this and (iii) we conclude thatM,w 
 p. Which contradicts (ii). For the right

to left direction assume that F is not symmetric. Then, there are worlds x and y such

that xRy and 〈y, x〉 < R. Now letM1 = 〈W,R,V1〉 be the model where V1(x, p) = 0 and

V1(z, p) = 1 for all z such that yRz. Since V1(x, p) = 0, then (iv)M1, x 1 p. By definition of

V1 we have thatM1, y 1 `p. From the latter and by xRy, it follows that (v)M1, x 
 ``p.

Thus, by (iv) and (v),M1, x 1 ``p ⊃ p.

(4) Assume that F is transitive. Suppose by contradiction that F 1 `β ⊃ (`α ∨ ``α).

Then there is a modelM and a world w such that (i)M,w 
 `β andM,w 1 `α∨``α,

that is, (ii)M,w 1 `α and (iii)M,w 1 ``α. By (i), there is a v accessible from w. In v,

by (ii) and (iii) we have respectively that (iv) M, v 
 α and (v) M, v 
 `α. From the

latter, there is a world u such that vRu andM,u 1 α. Given wRvRu and (ii), it follows

thatM,u 
 α. This is an absurd.

For the left to right direction, suppose by contraposition that, F is not transitive, then

there are worlds x, y and z such that xRy, yRz and x does not access z. LetM = 〈F ,V〉

be a model and p, q propositional variables such that V(z, p) = V(y, q) = 0, and for all u

accessible from x, let V(u, p) = 1. Moreover, let V(n, p) = 0 if xRm and mRn. Since xRy

and V(y, q) = 0, then (a) V(x,`q) = 1. Every world ofM accessible from x satisfies p,
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then (b) V(x,`p) = 0. By the construction ofM, V(t,`p) = 1 for every t such that xRt.

Thus, (c) V(x,``p) = 0. By (b) and (c), it follows that V(x,`p∨``p) = 0. From this and

(a) we conclude that V(x,`q ⊃ (`p ∨ ``p)) = 0.

(5) Assume that F is euclidean. Suppose by contradiction that F 1 `α ⊃ (``α ⊃ β).

Then, there is a modelM and a world w, such that (i)M,w 
 `α and (ii)M,w 
 ``α.

By (i) there is a world x such that wRx andM, x 1 α, by (ii) there is z such that wRz and

(iii)M, z 1 `α. Since wRz, wRx and F is euclidean, then it follows that zRx. From this

and (iii) we conclude thatM, x 
 α. This is an absurd.

For the other direction assume that F is not euclidean. Then, there are worlds x, y

and z such that xRy, xRz and 〈y, z〉 < R. Let M = 〈F ,V〉 be the model such that

V(x, q) = V(z, p) = 0 and V(m, p) = 1 for every m such yRm. From the latter we conclude

that (i) V(y,`p) = 0. By xRy and (i) it follows that (ii) V(x,``p) = 1. From (ii) and

V(x, q) = 0 it follows that (iii) V(x,``p ⊃ q) = 0. Since xRz and V(z, p) = 0, then

V(x,`p) = 1. From this and (iii) we conclude that V(x,`p ⊃ (``p ⊃ q)) = 0. QED

The extension of the minimal LAB logic with some of these axioms originate other

LAB logics. For these logics the following completeness results can be now established:

Proposition 3.4.3.

1. `KT` α iff α is valid in all reflexive frames.

2. `KB` α iff α is valid in all symmetric frames.

3. `S4` α iff α is valid in all reflexive and transitive frames.

4. `S5` α iff α is valid in all reflexive and euclidean frames.

Proof. In what follows let F = 〈WC,RC,WC〉 be the canonical frame. The proof consists

in showing that the relation of the canonical frame has the adequate properties.

(1) We have to show that wRCw, that is,c[w] ⊆ w for every w ∈W. Assume that for some

formula ϕ, (i) ϕ ∈ c[w] and (ii) ϕ < w. By (i), it follows that `ϕ < w. Since `ϕ ∨ ϕ ∈ w,

by Prop. 3.1.3 we have that ϕ ∈ w, which contradicts (ii). Thus, wRw.

(2) Assume that (i)c[w] ⊆ v. We shall show thatc[v] ⊆ w. Otherwise suppose that there

is (ii) ϕ ∈ c[v] such that (iii) ϕ < w. By (ii) we have that `ϕ < v. From this, (i) and Prop.

3.1.3, it follows that `ϕ < c[w], that is ``ϕ ∈ w. Since ``ϕ ⊃ ϕ ∈ w, from the latter we

conclude that ϕ ∈ w. This contradicts (ii).



44

(3) Assume that (i) xRy and (ii) yRz for some x, y, z ∈W. By (i) and (ii) it follows that (iii)

c[x] ⊆ y and (iv) c[y] ⊆ z respectively. Suppose that ϕ ∈ c[x] for an arbitrary ϕ. From

this it follows that (v) `ϕ < x. Since y is a L-maximal coherent set of formulas then

⊥ < y. From the latter and (iii) we have that (vi) `⊥ ∈ x. The formula `⊥ ⊃ (`ϕ∨``ϕ),

a theorem of S4`, is an element of x. From this, (v) and Prop. 3.1.3.1 we have that

(`ϕ ∨ ``ϕ) ∈ x. By Prop. 3.1.3.2 and (vi) it follows that ``ϕ ∈ x. By this we have that

`ϕ < c[x]. Now using (i) we have that `ϕ < y, that is, (vii) ϕ ∈ c[y]. We conclude from

(iv) and (vii) that ϕ ∈ z.

(4) Assume that there are u, v,w ∈ W such that (i) wRv, (ii) wRu and (iii) 〈u, v〉 < R,

that is c[u] ⊆ v . By (i) and (ii) we have (iv) c[w] ⊆ v and (v) c[w] ⊆ u respectively.

By (iii) there is a formula ϕ such that (vi) ϕ ∈ c[u] and (vii) ϕ < v. By (vi) it follows

that (viii) `ϕ < u. By (vii) and (iii), it follows that ϕ < c[w], that is (ix) `ϕ ∈ w. Since

`ϕ ⊃ (``ϕ ⊃ ⊥) ∈ w, then ``ϕ ⊃ ⊥ ∈ w. The latter, by definition of ∼, is the same that

∼``ϕ. Since w is a L-maximal coherent set of formulas, then (x) ``ϕ < w. From this it

follows that `ϕ ∈ c[w]. Thus, by (v), `ϕ ∈ u. This contradicts (viii). QED

The results proved in this section will be used to make a comparison between our

LAB logics and some modal logics.

3.5 LAB Logics and Modal Logics

The items 3 and 4 of the Prop. 3.3.1 are the usual way of semantically defining the

modalities 2 and ♦, see((Blackburn; de Rijke; Venema, 2001),(Cresswell; Hughes, 2003)). It is

not surprising that the completeness results proved in Propositions 3.4.1 and 3.4.3 show

us an alternative way of characterizing some normal modal logics. Both logics K` and

the normal modal logic K are characterized by the class of all frames. A similar analogy

may be established between: the LAB logic KB` and the logic KB, characterized by the

class of symmetric frames; the logic KT` and the logic KT by the class of all reflexives

frames; S4` and S4 by the class of all transitive and reflexive frames; S5` and S5 by the

class of all frames based on equivalence relations.

Our paranormal negation `, as shown in (Marcos, 2005a), is not paracomplete in

extensions of the logic KT. But the author, in the same work, studied another paranormal

negationa. That in the LAB logics is defined as follows:aα
de f
= ∼`∼α. Other connectives,

strongly related with this negations, are also studied there: the restoration connectives.

One of them is the connective of consistency ◦, defined as ◦α
de f
= α ⊃ ∼`α. It is easy
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to check that there are no model M neither world w in M such that M satisfies the

formula α ∧ `α ∧ ◦α at w.

The axiom`(α∧β) ⊃ (`α∨`β) of LAB logics and the theorem2(α∧β) ⊃ (2α∧2β) of

K represent important properties of this connectives. We will see in next chapter that, in

a multiple-conclusion environment, these properties and the property above described

to the connective◦, are used to characterize certain types of positive modalities, negative

modalities and restoration modalities.

Another way of seeing the next chapter is as the study of the fragment of LAB logics

without implication, where we will show a completeness result and ways of connecting

this new logic with classical logic and De Morgan logic.
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4 A Rich Language For Negative
Modalities

We study a modal language for negative operators —an intuitionistic-like negation

and its paraconsistent dual—added to (bounded) distributive lattices. For each non-

classical negation an extra operator is hereby adjoined in order to allow for standard

logical inferences to be opportunely restored. We present abstract characterizations and

exhibit the main properties of each kind of negative modality, as well as of the associ-

ated connectives that express consistency and determinedness at the object-language

level. Appropriate sequent-style proof systems and adequate Kripke semantics are

also introduced, characterizing the minimal normal logic and a few other basic logics

containing such negative modalities and their companions.

4.1 Context

Negationless normal modal logics with box-like and diamond-like operators were

studied by Dunn in (Dunn, 1995), where the author obtains completeness results for the

systems characterized by the class of all Kripke frames and by a few specific subclasses

thereof. In (Celani; Jansana, 1997), Celani & Jansana extend that study so as to cover many

other logics, and to that effect they consider Kripke-style semantics based on frames

containing two relations —one of them being a preorder, as in intuitionistic logic,

allowing for the expression of appropriate heredity conditions. Systems containing

analogous negative modalities were studied by Dunn & Zhou, who investigate in

(Dunn; Zhou, 2005) modal logics with conjunction, disjunction, an impossibility operator

intended to play the role of an intuitionistic-like negation and a non-necessity operator

intended to play the role of a paraconsistent negation. Restall, in (Restall, 1997), proposed

a combination of positive and negative diamond-like modal operators; one of his aims

was to use the resulting system to exhibit examples of modal logics that turn out

to be undecidable even in the absence of classical negation. In the present chapter
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we will study a logic that contains the already mentioned negative modal operators

over a strictly positive propositional basis (on a fragment agreed upon by intuitionists

and classical logicians) to which we add extra operators that express at the object-

language level the very notions of consistency and determinedness that allows one to

recover much of the standard logical reasoning even when neither classical negation nor

classical implication are available. The mentioned extra modal ‘restoration’ connectives

were first proposed in (Marcos, 2005a). The basic universal logic apparatus used here is

based on (Humberstone, 2011) and (Marcos, 2005b), and the proof-theoretical approach to

the consistency operator is inherited from (Avron; Konikowska; Zamansky, 2013).

The structure of the chapter is as follows: in Section 4.2 we present the Univer-

sal Logic background, including the formulation of properties characterizing negative

modalities and the properties that characterize connectives intended to express consis-

tency and determinedness at the object-language level; in Section 4.3 a sequent system

is used to define our main and most basic modal system, in which we include rules

for introducing the restoration connectives and rules for the interaction between the

non-classical negations; in Sections 4.4 and 4.5 the intended Kripke semantics is pre-

sented for our full modal language and our deductive system is shown to be sound

and complete with respect to this semantics; a few extensions of the basic system are

then formulated in Section 4.6; in Section 4.7 we study how the inferences of more

standard logic systems may be recovered with the use of our rich modal language, by

way of appropriate Derivability Adjustment Theorems; last, in Section 4.8, we briefly

comment upon some directions for future research.

4.2 Universal Logic Perspective

LetL be a standard propositional language. As customary, we shall use small Greek

letters to denote arbitrary sentences, and capital Greek letters for sets of sentences

of L. A generalized consequence relation (gcr) will here be assumed to be a relation

� ⊆ 2L × 2L that enjoys the following universal properties:

(ovl) Γ, ϕ� ϕ,∆

(mon) If Γ1 � ∆1, then Γ2,Γ1 � ∆1,∆2

(trn) If Γ1, ϕ� ∆1 and Γ2 � ϕ,∆2, then Γ1,Γ2 � ∆1,∆2

In writing a statement such as Π∪ {π}�∅ in the simplified form Π, π �we are simply

aligning with standard usage from the literature. Here we shall write Γ� ∆ to indicate



48

that Γ � ∆ fails, that is, that 〈Γ,∆〉 < �. Furthermore, aiming at a structured outlook

on the above properties and on proofs based on them, we shall employ the following

graphical representation:

(ovl)
Γ, ϕ � ϕ,∆

Γ1 � ∆1 (mon)
Γ2,Γ1 � ∆1,∆2

Γ1, ϕ � ∆1 Γ2 � ϕ,∆2
(trn)

Γ1,Γ2 � ∆1,∆2

A set Σ ⊆ Lwill be called a �-theory ifϕ ∈ Σ whenever Σ�ϕ,∆ for every ∆ ⊆ L. Dually,

the set of sentences Σ will be called a �-cotheory if ϕ ∈ Σ whenever Γ, ϕ� Σ for every

Γ ⊆ L. Taking such definitions into account, a �-theory pair will be any pair 〈Σ1,Σ0〉

where Σ1 is a �-theory and Σ0 is a �-cotheory. Given two �-theory pairs Σ = 〈Σ1,Σ0〉

and Π = 〈Π1,Π0〉, we say thatΠ extends Σ if Σ1 ⊆ Π1 and Σ0 ⊆ Π0 — we denote this by

Σ ⊆ Π. In addition, fixed a given gcr�, a theory pair Σ = 〈Σ1,Σ0〉 is called unconnected

if Σ1 � Σ0, and is called closed if Σ1 ∪ Σ0 = L. A gcr is called trivial if it does not allow

for any unconnected theory pair.

A gcr � is called finitary if it enjoys the following property:

(fin) If Γ� ∆, then there are finite sets Γ′ ⊆ Γ and ∆′ ⊆ ∆ such that Γ′ � ∆′

For finitary gcrs, thus, a connected theory pair extends some finite connected theory

pair.

We confirm next that finitary gcrs enjoy the following property — a version of the

well-known Lindenbaum-Asser Lemma (cf. (Segerberg, 1982)):

Proposition 4.2.1. Let � be a finitary gcr. Then every unconnected �-theory pair can be

extended into a closed unconnected �-theory pair.

Proof. Assume Γ�∆. LetEbe the collection of unconnected extensions of 〈Γ,∆〉, partially

ordered by inclusion, and let C = {〈Ci
1,C

i
0〉}i∈I be some chain (a totally ordered set) on E.

We claim that
⋃
C = 〈

⋃
i∈I C

i
1,
⋃

i∈I C
i
0〉 is an upper bound for E, i.e., we claim that

Π ⊆
⋃
C for every Π ∈ E (which is obvious) and also claim that (∗)

⋃
C ∈ E.

We check (∗). Where Λ = 〈Λ1,Λ0〉 is a �-theory pair, let Fin(Λ) denote the set of

�-theory pairs 〈Λ̂1, Λ̂0〉 where Λ̂1 ∪ Λ̂0 is a finite set and Λ extends 〈Λ̂1, Λ̂0〉. Consider

an arbitrary Φ = 〈Φ1,Φ0〉 such that Φ ∈ Fin(
⋃
C). Then there is some Ck

∈ C such that

Φ ⊆ Ck. As Ck
1 � C

k
0, by (mon) we conclude that Φ1 � Φ0. By (fin) it follows that

⋃
C is

unconnected. By Zorn’s Lemma, if every chain in a partially ordered set has an upper
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bound, then there is a maximal element in that set; so, we conclude that Emust have a

maximal unconnected element 〈Γ?,∆?
〉 ⊇ 〈Γ,∆〉. To see that 〈Γ?,∆?

〉 is indeed closed,

suppose there is some ϕ ∈ L such that neither 〈Γ? ∪ {ϕ},∆?
〉 nor 〈Γ?,∆?

∪ {ϕ}〉 are

unconnected. Then, by (trn), it would follow that Γ? � ∆?. QED

From this point on we consider some language specifics, concerning connectives

of L. A binary connective ∧ in L will be called a �-ordinary conjunction when it

satisfies

(oC) Γ, ϕ ∧ ψ� ∆ iff Γ, ϕ, ψ� ∆

for arbitrary sentences ϕ,ψ ∈ L and arbitrary contexts Γ,∆ ⊆ L. In other words, to

have a classic-like behavior, a conjunction will be expected to internalize, at the object-

level, the meta-level commas that appear in the left-hand side of �. Dually, a binary

connective ∨ is called a �-ordinary disjunction when it satisfies

(oD) Γ� ϕ ∨ ψ,∆ iff Γ� ϕ,ψ,∆

In addition, a �-ordinary top and a �-ordinary bottom are 0-ary connectives > and ⊥

satisfying

(oT) Γ,>� ∆ iff Γ� ∆ (oB) Γ�⊥,∆ iff Γ� ∆

From such definitions one may easily check for instance that:

Proposition 4.2.2. For any �-ordinary conjunction ∧ and any �-ordinary disjunction ∨, the

following rule-statements hold:

Γ1 � α,∆1 Γ2 � β,∆2
(Cj1)

Γ1,Γ2 � α ∧ β,∆1,∆2

Γ1, α � ∆1 Γ2, β � ∆2
(Dj1)

Γ1,Γ2, α ∨ β � ∆1,∆2

Proof. The proofs proceed as follows. We starting with rule-statement (Cj1):
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Proof using the properties of gcr Graphical representation of the proof

Assume (1) Γ1 � α,∆1 and (2)

Γ2 � β,∆2. By (ovl) we know that

(3) α ∧ β � α ∧ β. By (3) and (oC)

it follows that (4) α, β � α ∧ β. Us-

ing (trn) on (1) and (4) we ob-

tain (5) Γ1, β � α ∧ β,∆1. From (5),

(2) and (trn) we conclude that

Γ1,Γ2 � α ∧ β,∆1,∆2.

(ovl)
α ∧ β � α ∧ β

(oC)
α, β � α ∧ β Γ1 � α,∆1

(trn)
Γ1, β � α ∧ β,∆1 Γ2 � β,∆2

(trn)
Γ1,Γ2 � α ∧ β,∆1,∆2

For rule-statement (Dj1) we rely directly on the corresponding tree-like presentation:

(ovl)
α ∨ β � α ∨ β

(oD)
α ∨ β � α, β Γ1, α � ∆1

(trn)
Γ1, α ∨ β � β,∆1 Γ2, β � ∆2

(trn)
Γ1,Γ2, α ∨ β � ∆1,∆2

QED

An immediate offshoot of the above result is that theories are closed under ordinary

conjunctions and cotheories are closed under ordinary disjunctions:

Corollary 4.2.1. Let ∧ be a �-ordinary conjunction, ∨ be a �-ordinary disjunction, > be a

�-ordinary top and ⊥ be a �-ordinary bottom. Consider a �-theory pair 〈Σ1,Σ0〉. Then:

(i) If ϕ ∈ Σ1 and ψ ∈ Σ1, then ϕ ∧ ψ ∈ Σ1 (iii) > ∈ Σ1

(ii) If ϕ ∈ Σ0 and ψ ∈ Σ0, then ϕ ∨ ψ ∈ Σ0 (iv) ⊥ ∈ Σ0

This will be very useful later on, in particular in Section 4.5. For closed theories, a

further important result may be proven:

Proposition 4.2.3. Let ∧ be a�-ordinary conjunction and ∨ be a�-ordinary disjunction, and

let 〈Σ1,Σ0〉 be a closed unconnected �-theory pair. Then:

1. If ϕ ∨ ψ ∈ Σ1, then ϕ ∈ Σ1 or ψ ∈ Σ1

2. If ϕ ∧ ψ ∈ Σ0, then ϕ ∈ Σ0 or ψ ∈ Σ0

Proof. For item (1), suppose by contraposition that ϕ < Σ1 and ψ < Σ1. By closure it

follows that ϕ ∈ Σ0 and ψ ∈ Σ0. By the definition of cotheory, this means that Γ, ϕ� Σ0
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and Γ, ψ�Σ0 for every Γ ⊆ L. For any arbitrary such Γ it follows by (Dj1) that Γ, ϕ∨ψ�Σ0.

So, given that Σ0 is a cotheory, we have ϕ ∨ ψ ∈ Σ0, and by unconnectedness it follows

that ϕ ∨ ψ < Σ1. The proof of item (2) uses (Cj1). QED

Fix now a unary connective # in L. We say that # is �-preserving if it satisfies

(Pvs#) ϕ� ψ implies #ϕ� #ψ

and say that # is �-reversing if

(Rvs#) ϕ� ψ implies #ψ� #ϕ

Following (Marcos, 2005b), the minimal conditions we will demand for calling # a

negation consist on the existence of sentences ϕ and ψ such that #ϕ � ϕ and ψ � #ψ,

that is, such that the theory pairs 〈#ϕ,ϕ〉 and 〈ψ, #ψ〉 are unconnected. The underlying

intuition is that negation should bring about some ‘inversion’ with respect to the

underlying notion of consequence. It should be noticed that, in principle, a negation

abiding to such minimal conditions need not be �-reversing —yet, (Rvs#) is a typical

and desirable property of modal negations such as the ones we will be studying in

the present chapter. The following result introduces some properties that will play an

important role in what follows:

Proposition 4.2.4. Assume ∧ to be a �-ordinary conjunction and ∨ to be a �-ordinary

disjunction. For any �-preserving connective #, the following statements hold:

(PM1.1#) #(ϕ ∧ ψ)� #ϕ ∧ #ψ (PM2.1#) #ϕ ∨ #ψ� #(ϕ ∨ ψ)

If # is �-reversing, the following alternative statements hold instead:

(DM1.1#) #(ϕ ∨ ψ)� #ϕ ∧ #ψ (DM2.1#) #ϕ ∨ #ψ� #(ϕ ∧ ψ)

Proof. The proofs below use rule-statements (Cj1) and (Dj1) from Prop. 4.2.2.

(ovl)
ϕ � ϕ

(mon)
ϕ,ψ � ϕ

(oC)
ϕ ∧ ψ � ϕ

(Pvs#)
#(ϕ ∧ ψ) � #ϕ

(ovl)
ψ � ψ

(mon)
ϕ,ψ � ψ

(oC)
ϕ ∧ ψ � ψ

(Pvs#)
#(ϕ ∧ ψ) � #ψ

(Cj1)
#(ϕ ∧ ψ) � #ϕ ∧ #ψ

(ovl)
ϕ � ϕ

(mon)
ϕ � ϕ,ψ

(oD)
ϕ � ϕ ∨ ψ

(Rvs#)
#(ϕ ∨ ψ) � #ϕ

(ovl)
ψ � ψ

(mon)
ψ � ϕ,ψ

(oD)
ψ � ϕ ∨ ψ

(Rvs#)
#(ϕ ∨ ψ) � #ψ

(Cj1)
#(ϕ ∨ ψ) � #ϕ ∧ #ψ

(ovl)
ϕ � ϕ

(mon)
ϕ � ϕ,ψ

(oD)
ϕ � ϕ ∨ ψ

(Pvs#)
#ϕ � #(ϕ ∨ ψ)

(ovl)
ψ � ψ

(mon)
ψ � ϕ,ψ

(oD)
ψ � ϕ ∨ ψ

(Pvs#)
#ψ � #(ϕ ∨ ψ)

(Dj1)
#ϕ ∨ #ψ � #(ϕ ∨ ψ)

(ovl)
ϕ � ϕ

(mon)
ϕ,ψ � ϕ

(oC)
ϕ ∧ ψ � ϕ

(Rvs#)
#ϕ � #(ϕ ∧ ψ)

(ovl)
ψ � ψ

(mon)
ϕ,ψ � ψ

(oC)
ϕ ∧ ψ � ψ

(Rvs#)
#ψ � #(ϕ ∧ ψ)

(Dj1)
#ϕ ∨ #ψ � #(ϕ ∧ ψ)
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QED

In what follows we shall say that # has type [+] (read ‘box-plus’) if it respects

(PM1.2#) #ϕ ∧ #ψ� #(ϕ ∧ ψ)

and say that # has type <+> (‘diamond-plus’) if it respects

(PM2.2#) #(ϕ ∨ ψ)� #ϕ ∨ #ψ

When a�-ordinary top> is available, we will expect a full type [+] connective # to also

respect

(PT#) � #>

Given an �-ordinary bottom ⊥, a full type <+> connective # is also to respect

(PB#) #⊥�

Dually, we shall say that # has type [-] (read as ‘box-minus’) if it respects

(DM1.2#) #ϕ ∧ #ψ� #(ϕ ∨ ψ)

and say that # has type <-> (‘diamond-minus’) if it respects

(DM2.2#) #(ϕ ∧ ψ)� #ϕ ∨ #ψ

When a�-ordinary top> or a�-ordinary bot⊥ are available, a full type [-] connective #

will be expected to respect

(DB#) � #⊥

and a full type <-> connective # will be expected to respect

(DT#) #>�

We now turn to properties induced by our main (non-classical) negations and use

them to characterize the restoration connectives that will accompany them. Here, given

some specific sentence ϕ, the gcr�will be called #-consistent with respect toϕ in case

it satisfies
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(Cns#ϕ) Γ, ϕ, #ϕ� ∆

for any choice of contexts Γ and ∆. Dually, the gcr � will be called #-determined with

respect toϕ in case it satisfies

(Dtm#ϕ) Γ� #ϕ,ϕ,∆

for any choice of contexts Γ and ∆. A gcr will be called #-inconsistent if there is some

sentence ϕ with respect to which (Cns#ϕ) fails, and will be called #-undetermined if

there is some sentence ϕ with respect to which (Dtm#ϕ) fails. If some negation # is

available such that � turns out to be both #-consistent and #-determined with respect

to all sentences, such # will be called a �-ordinary negation. For #-inconsistent and for

#-undetermined gcrs it will often be useful to have a way of internalizing, at the object-

level, the corresponding notions of consistency and determinedness. To that effect,

a �-ordinary consistency connective will be defined as a unary symbol #© satisfying

(GC#) Γ� #©ϕ,∆ iff Γ, ϕ, #ϕ� ∆

for any choice of contexts Γ and ∆ and any sentence ϕ. Analogously, a �-ordinary

determinedness connective will be defined as a unary symbol #© satisfying

(GD#) Γ, #©ϕ� ∆ iff Γ� #ϕ,ϕ,∆

A useful alternative abstract characterization of such new connectives is exhibited in

what follows:

Proposition 4.2.5. Let � be a gcr. Then:

[EQ1] Clause (GC#) is equivalent to the following three clauses taken together:

(Cb#) Γ, #©ϕ, #ϕ,ϕ� ∆ (Ck1#) Γ� ϕ, #©ϕ,∆ (Ck2#) Γ� #ϕ, #©ϕ,∆

[EQ2] Clause (GD#) is equivalent to the following three clauses taken together:

(Db#) Γ� ϕ, #ϕ, #©ϕ,∆ (Dk1#) Γ, #©ϕ,ϕ� ∆ (Dk2#) Γ, #©ϕ, #ϕ� ∆

Proof. Rule-statement (GC#) may be split in two halves, namely:

Γ, ϕ, #ϕ � ∆
(GC1#)

Γ � #©ϕ,∆
Γ � #©ϕ,∆

(GC2#)
Γ, ϕ, #ϕ � ∆
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These will help in attaining our goals below. We start by verifying [EQ1].

[Part 1] Assume (GC1#) and (GC2#) to hold. Then notice that:

(ovl)
Γ, #©ϕ � #©ϕ,∆

(GC2#)
Γ, #©ϕ, #ϕ,ϕ � ∆

(ovl)
Γ, ϕ � ϕ,∆

(mon)
Γ, ϕ, #ϕ � ϕ,∆

(GC1#)
Γ � ϕ, #©ϕ,∆

(ovl)
Γ, #ϕ � #ϕ,∆

(mon)
Γ, ϕ, #ϕ � #ϕ,∆

(GC1#)
Γ � #ϕ, #©ϕ,∆

[Part 2] Assume (Cb#), (Ck1#) and (Ck2#) to hold. Then notice that:

Γ, ϕ, #ϕ � ∆
(Ck1#)

Γ � ϕ, #©ϕ,∆
(trn)

Γ, #ϕ � #©ϕ,∆
(Ck2#)

Γ � #ϕ, #©ϕ,∆
(trn)

Γ � #©ϕ,∆

Γ � #©ϕ,∆
(Cb#)

Γ, #©ϕ, #ϕ,ϕ � ∆
(trn)

Γ, ϕ, #ϕ � ∆

Verifying equivalence [EQ2], now, is an entirely analogous exercise, which we shall

leave to the interested reader. [Part 1] Assume (GD1#) and (GD2#)
(ovl)

Γ, #©ϕ � #©ϕ,∆
(GD2#)

Γ � #©ϕ, #ϕ,ϕ,∆

(ovl)
Γ, ϕ � ϕ,∆

(mon)
Γ, ϕ � ϕ, #ϕ,∆

(GD1#)
Γ, ϕ, #©ϕ � ∆

(ovl)
Γ, #ϕ � #ϕ,∆

(mon)
Γ, #ϕ � ϕ, #ϕ,∆

(GD1#)
Γ, #ϕ, #©ϕ � ∆

[Part 2] Assume (Cb), (Ck1) and (Ck2).
Γ � ϕ, #ϕ,∆

(Dk1)
Γ, ϕ, #©ϕ � ∆

(trn)
Γ, #©ϕ � #ϕ,∆

(Dk2)
Γ, #ϕ, #©ϕ � ∆

(trn)
Γ, #©ϕ � ∆

Γ, #©ϕ � ∆
(Db)

Γ � #©ϕ, #ϕ,ϕ,∆
(trn)

Γ � ϕ, #ϕ,∆
QED

From this point on we shall fix a set of sentences L inductively defined by:

ϕ ::= p | (ϕ1 ∧ ϕ2) | (ϕ1 ∨ ϕ2) | (aϕ) | (`ϕ) | (a©ϕ) | (©̀ϕ)

where p ranges over a denumerable set P of propositional variables, both a and `

are symbols intended to represent negations, and the symbols ©̀ and a© are intended

to represent the restoration connectives that will be associated to the latter negation

symbols. Fixed an arbitrary sentence ϕ, we will define > as an abbreviation for ϕ ∨

aϕ ∨ a©ϕ and will define ⊥ as short for ϕ ∧ `ϕ ∧ ©̀ϕ. In the following sections we

shall introduce a convenient deductive system involving the above connectives, and

provide subsequently a characteristic modal interpretation for them. Using such proof

system and such interpretation we will be able to easily classify each connective of L

with respect to the terminology introduced above.

It is worth adding a few words on the connection between inconsistency, unde-

terminedness and the perhaps more usual terms ‘paraconsistency’ and ‘paracomplete-

ness’, now very common in the literature on non-classical negations. Suppose the lan-

guage of a given gcr� contains a symbol # satisfying the minimal conditions to be called

a negation. In that case, we say that� is #-paraconsistent if there are sentences ϕ and ψ
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such thatϕ, #ϕ�ψ, and say that� is #-paracomplete if there are sentencesϕ andψ such

that ϕ� #ψ,ψ. Obviously, in case a #-ordinary bottom⊥ is available, #-paraconsistency

simply coincides with #-inconsistency, and in case a #-ordinary top > is available, #-

paracompleteness coincides with #-undeterminedness. Paraconsistent logics equipped

with ordinary consistency connnectives constitute particularly interesting examples of

the so-called logics of formal inconsistency, or more simply LFIs (check (Carnielli; Mar-

cos, 2002; Carnielli; Coniglio; Marcos, 2007)). Their duals, paracomplete logics with ordinary

determinedness connectives, are called logics of formal undeterminedness, or LFUs.

As an additional useful matter of notation for the next sections, given T ⊆ L and

any unary connective } we shall by }[T] denote the set {}ϕ : ϕ ∈ T}, and by }−1[T]

denote the set {ϕ : }ϕ ∈ T}. By T we will denote the complement of T relative to L.

4.3 Proof-theoretical Presentation

We will introduce in what follows our main sequent systems, namely, proof for-

malisms with each rule has the format {Ai ⇒ Bi : i ∈ I}
(rule)

A⇒ B
where each Ak and each Bk,

k ∈ I, represents a finite sequence of sentences ofL and where I is a finite set of indices.

As usual, given a collection R of inference rules, a deductive system is associated to R

by defining Γ ` ∆ to hold if there are finite sets A ⊆ Γ and B ⊆ ∆ such that A ⇒ B is

derivable from the rules in R. In what follows we impose the standard structural rules,

defining the system S:

(id)ϕ⇒ ϕ
A1, ϕ⇒ B1 A2 ⇒ ϕ,B2

(cut)
A1,A2 ⇒ B1,B2

A⇒ B (W/)
A, ϕ⇒ B

A⇒ B (/W)
A⇒ ϕ,B

Such rules and the very definition of ` are obviously sufficient to guarantee that the

corresponding deductive system is a finitary gcr. As it is well-known, the system DL

for distributive lattices is obtained from S by adding the standard rules for (classical)

conjunction and disjunction:

A, ϕ, ψ⇒ B
(∧/)

A, ϕ ∧ ψ⇒ B
A⇒ ϕ,B A⇒ ψ,B

(/∧)
A⇒ ϕ ∧ ψ,B

A, ϕ⇒ B A, ψ⇒ B
(∨/)

A, ϕ ∨ ψ⇒ B
A⇒ ϕ,ψ,B

(/∨)
A⇒ ϕ ∨ ψ,B

Where `dl is the gcr associated to DL, the interplay between the structural rules and

the logical rules allows us to easily check that both ∧ and ∨ are `dl-ordinary, as well as
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to derive the usual distributivity rules involving the connectives ∧ and ∨— namely, to

derive both ϕ∧ (ψ∨χ)⇒ (ϕ∧ψ)∨ (ϕ∧χ) and (ϕ∧ψ)∨ (ϕ∧χ)⇒ ϕ∧ (ψ∨χ), as well

as their duals, exchanging the roles of ∧ and ∨.

Our main systemKn adds toDL the following logical rules involving the remaining

connectives of the language L:

A⇒ ϕ,B A⇒ `ϕ,B
(©̀/)

A, ©̀ϕ⇒ B
A, ϕ,`ϕ⇒ B

(/©̀)
A⇒ ©̀ϕ,B

A⇒ ϕ,aϕ,B
(a©/)

A, a©ϕ⇒ B
A, ϕ⇒ B A,aϕ⇒ B

(/a©)
A⇒ a©ϕ,B

A⇒ ϕ,B
(`a)

a[B],`ϕ⇒ `[A]
A, ϕ⇒ B

(a`)
a[B]⇒ aϕ,`[A]

Using the structural rules and the rules for ©̀ and a©, it easily follows that (as in

Prop. 4.2.5):

Proposition 4.3.1. The following sequents are derivable inKn:

(GCb`) ©̀ϕ,`ϕ,ϕ⇒ (GDba) ⇒ ϕ,aϕ, a©ϕ

(GCk1`) ⇒ ϕ, ©̀ϕ (GDk1a) a©ϕ,ϕ⇒

(GCk2`) ⇒ `ϕ, ©̀ϕ (GDk2a) a©ϕ,aϕ⇒

Proof. Witnessing derivations may be built as follows:

(GCb`)
(id)ϕ⇒ ϕ
(W/)`ϕ,ϕ⇒ ϕ

(id)`ϕ⇒ `ϕ
(W/)`ϕ,ϕ⇒ `ϕ
(©̀/)

©̀ϕ,`ϕ,ϕ⇒
(GDba)

(id)ϕ⇒ ϕ
(/W)ϕ⇒ ϕ,aϕ

(id)aϕ⇒ aϕ
(/W)aϕ⇒ ϕ,aϕ
(©̀/)

⇒ a©ϕ,aϕ,ϕ

(GCk1`)
(id)ϕ⇒ ϕ
(W/)ϕ,`ϕ⇒ ϕ

(/©̀)
⇒ ϕ, ©̀ϕ

(GDk1a)
(id)ϕ⇒ ϕ

(/W)ϕ⇒ ϕ,aϕ
(a©/)ϕ, a©ϕ⇒

(GCk2`)
(id)`ϕ⇒ `ϕ
(W/)`ϕ,ϕ⇒ `ϕ

(/©̀)
⇒ `ϕ, ©̀ϕ

(GDk2a)
(id)aϕ⇒ aϕ

(/W)aϕ⇒ ϕ,aϕ
(a©/)aϕ, a©ϕ⇒

QED

Recalling the appropriate definitions from Section 4.2 and substituting `n for�, one

may easily check inKn the following assertions as derived rules:

Proposition 4.3.2.

1. ⊥ is a `n-ordinary bottom and > is a `n-ordinary top
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2. a is a full type [-] `n-reversing connective, and

` is a full type <-> `n-reversing connective

3. a© is a `n-ordinary determinedness connective, and

©̀ is a `n-ordinary consistency connective

Proof. [⊥ is a `n-ordinary bottom]

A⇒ B (/W)
A⇒ ⊥,B

A⇒ ⊥,B
(def. ⊥)

A⇒ ϕ ∧ `ϕ ∧ ©̀ϕ,B

(GCb`)ϕ,`ϕ, ©̀ϕ⇒
(∧/)

ϕ ∧ `ϕ, ©̀ϕ⇒
(∧/)

ϕ ∧ `ϕ ∧ ©̀ϕ⇒
(cut)

A⇒ B

[> is a `n-ordinary top]

A⇒ B (W/)
A,> ⇒ B

A,> ⇒ B
(def. >)

A, ϕ ∨ aϕ ∨ a©ϕ⇒ B

(GDba)
⇒ ϕ,aϕ, a©ϕ

(/∨)
⇒ ϕ ∨ aϕ, a©ϕ

(/∨)
⇒ ϕ ∨ aϕ ∨ a©ϕ

(cut)
A⇒ B

[a is a full type [-] `n-reversing connective]

(GCb`)ϕ,`ϕ, ©̀ϕ⇒
(∧/)×2

ϕ ∧ `ϕ ∧ ©̀ϕ⇒
(def. ⊥)

⊥ ⇒ (a`)
⇒ a⊥

(id)ϕ⇒ ϕ
(id)

ψ⇒ ψ
(∨/)

ϕ ∨ ψ⇒ ϕ,ψ
(a`)

aϕ,aψ⇒ a(ϕ ∨ ψ)
(∧/)

aϕ ∧ aψ⇒ a(ϕ ∨ ψ)

ϕ⇒ ψ
(a`)

aψ⇒ aϕ

[` is a full type <-> `n-reversing connective]

(GDba)
⇒ ϕ,aϕ, a©ϕ

(/∨)×2
⇒ ϕ ∨ aϕ ∨ a©ϕ

(def. >)
⇒ > (`a)

`> ⇒

(id)ϕ⇒ ϕ
(id)

ψ⇒ ψ
(/∧)

ϕ,ψ⇒ ϕ ∧ ψ
(`a)

`(ϕ ∧ ψ)⇒ `ϕ,`ψ
(/∨)

`(ϕ ∧ ψ)⇒ `ϕ ∨ `ψ

ϕ⇒ ψ
(`a)

`ψ⇒ `ϕ

[a© is a `n-ordinary determinedness connective and ©̀ is a `n-ordinary consistency

connective] To check this, note first that rules (a©/) and (/©̀) already do half of the job.

As for the other half:

A, a©ϕ⇒ B (GDba)
⇒ ϕ,aϕ, a©ϕ

(cut)
A⇒ ϕ,aϕ,B

A⇒ ©̀ϕ,B (GCb`)ϕ,`ϕ, ©̀ϕ⇒
(cut)

A, ϕ,`ϕ⇒ B

QED

The following simple observation follows from Prop. 4.3.2(2) and rules (©̀/) and

(/a©), as may be easily checked:
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Proposition 4.3.3. The sequents⇒ ©̀> and a©⊥ ⇒ are derivable inKn.

Proof.

`> ⇒ (W/)
`>,> ⇒

(/©̀)
⇒ ©̀>

⇒ a⊥ (/W)
⇒ ⊥,a⊥

(a©/)
a©⊥ ⇒

QED

The following result concerns `-theory pairs, and will play an important role in

Section 4.5:

Proposition 4.3.4. Let 〈Σ1,Σ0〉 be an unconnected `-theory pair. Then, the derivability of the

nonempty sequent A⇒ B implies that either α < Σ1 for some α ∈ A, or β < Σ0 for some β ∈ B.

Proof. Consider a derivable sequent of the form α1, α2, . . . , αm ⇒ β1, β2, . . . , βn where

m + n > 0. Using rules (∧/) and (/∨) we may derive the sequent α1 ∧ α2 ∧ . . . ∧ αm ⇒

β1 ∨ β2 ∨ . . . ∨ βn. Call the latter sequent Seq. Suppose αi ∈ Σ1 for every 1 ≤ i ≤ m, and

β j ∈ Σ0 for every 1 ≤ j ≤ n. By Corol. 4.2.1 and in view of the fact that ∧ is a `-ordinary

conjunction and that∨ is a `-ordinary disjunction, it follows that (i) α1∧α2∧. . .∧αm ∈ Σ1

and that (ii) β1∨β2∨ . . .∨βn ∈ Σ0. Given that Σ1 is a `-theory, from (i) and the derivability

of Seq it follows that (iii) β1 ∨ β2 ∨ . . . ∨ βn ∈ Σ1; given that Σ0 is a `-cotheory, from (ii)

and the derivability of Seq it follows that (iv) α1 ∧ α2 ∧ . . .∧ αm ∈ Σ0. Now one may use

the sequent axiom (id) to conclude from (i) and (iv), in case m , 0, that the pair 〈Σ1,Σ0〉

is not unconnected; the same may be concluded from (ii) and (iii) in case n , 0. QED

The next section will introduce an adequate Kripke semantics forKn.

4.4 Kripke Semantics

Here, as usual, a frame F = 〈W,R〉will be a structure containing a nonempty set W

and a relation R ⊆ W ×W — members of W are often called worlds and R is said to

be an accessibility relation between these worlds. A state-of-affairs s on the frame F

is a mapping s : P → 2W. A valuation is defined as the recursive extension of a given

state-of-affairs s into a mapping Vs : L → 2W, as follows:

Vs(p) = s(p), where p ∈ P
Vs(ϕ1∧ϕ2) = Vs(ϕ1) ∩ Vs(ϕ2)
Vs(ϕ1∨ϕ2) = Vs(ϕ1) ∪ Vs(ϕ2)
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Vs(aϕ) = {w ∈W : ∀v ∈W(wRv implies v < Vs(ϕ))}
Vs(`ϕ) = {w ∈W : ∃v ∈W(wRv and v < Vs(ϕ))}

Vs(a©ϕ) = {w ∈W : w < Vs(ϕ) and w < Vs(aϕ)}
Vs(©̀ϕ) = {w ∈W : w < Vs(ϕ) or w < Vs(`ϕ)}

As there is thus a unique valuation Vs associated to each given state-of-affairs s, we

will in what follows simply omit the index s from Vs. It is helpful to fix at this point the

reading of the statement ‘w ∈ V(©̀ϕ)’ as guaranteeing the consistency of ϕ at w, and to

fix the reading of the statement ‘w < V(a©ϕ)’ as guaranteeing the determinedness of ϕ

at w.

Given the definitions of ⊥ and > as abbreviations (Section 4.2), it is easy to check

from the above notion of valuation that V(⊥) = ∅ and V(>) = W. A modelM = 〈F ,V〉

is a structure where F is a frame and V is a valuation on F . Given a class of frames F,

with the above definitions we may immediately consider the class M of all models

based on such frames. We say that ϕ ∈ L is satisfied at a state w ∈ W of a model

M = 〈W,R,V〉 if w ∈ V(ϕ); this is denoted by M,w 
 ϕ. When w < V(ϕ) we write

M,w 1 ϕ and say thatM falsifies ϕ at w. Given two sets of sentences, Γ and ∆, we say

that Γ entails ∆, denoted by Γ |= ∆, when at every world of every model either some

sentence in Γ is falsified or some sentence in ∆ is satisfied; sometimes this definition is

relativized to some given class of frames on which the relevant models are to be based.

It is not hard to check that |= is a gcr. As usual, the failure of Γ |= ∆ will be denoted by

Γ 6|= ∆. When ϕ is satisfied at all states of all models of a given frame F we say that ϕ

is valid in F , in symbols F 
 ϕ. The definition of satisfaction is extended to sequents

by writing M,w 
 A ⇒ B if M falsifies some ϕ ∈ A at w or M satisfies some ϕ ∈ B

at w. Moreover, on what concerns the other definitions, for any given model M and

any given frame F we writeM 
 A ⇒ B to say thatM,w 
 A ⇒ B at every state w

inM, and write F 
 A⇒ B to say thatM 
 A⇒ B for every modelM of F .

Using the above semantics, and taking into account the definitions in Section 4.2, is

not hard to check that:

Proposition 4.4.1. Both a and ` enjoy the minimal conditions expected of a negation. Indeed,

for any atomic variables p and q:

(1) ap 6|= p (2) q 6|= aq

(3) `p 6|= p (4) q 6|= `q

Proof. Consider the frame in which W = {w}, R = ∅ and, based on this frame, consider
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a model such that V(p) = ∅ and V(q) = W. It is easy to see that this is a counter-model

that bears witness to (1) and (4). From that a counter-model witnessing assertions (2)

and (3) is built by simply replacing R = ∅ by its complement R = W ×W. QED

Proposition 4.4.2. The entailment |= is a-undetermined as well as `-inconsistent.

Proof. Consider a frame F such that W = {u, v} and R is the total relation W × W,

and consider a modelM such that V(p) = {u} for an atomic variable p. It follows that

V(`p) = {u} and V(ap) = ∅, thus both p and `p are satisfied at u, and both p and ap are

falsified at v. QED

Our present semantical framework allows us also to provide straightforward veri-

fications for many inferences which would give rise to long derivations. The following

statements that guarantee that consistency propagates through conjunction and that

determinedness propagates through disjunction may indeed very easily be verified.

Proposition 4.4.3. ©̀ϕ, ©̀ψ |= ©̀(ϕ ∧ ψ) and a©(ϕ ∨ ψ) |= a©ϕ, a©ψ

Proof. Suppose that there is a modelM and a world w such that (i)M satisfies ©̀ϕ and

©̀ψ at w and (ii)M falsifies ©̀(ϕ ∧ ψ) at w. From the last it follows that (iii) `(ϕ ∧ ψ)

is satisfied at w and (iv) ϕ ∧ ψ is satisfied at w. From (i) and (iv) it follows that (v)M

falsifies both `ϕ and `ψ at w. By (iii) there is a world w′ such that ϕ ∧ ψ is falsified at

w′. But by (v), both ϕ and ψ must be satisfied at w′. Which is a contradiction.

Suppose again by contradiction that there is a modelM1 and a world w inM1 such

that (i)M1 satisfies a©(ϕ∨ψ) at w and (ii)M1 falsifies a©ϕ and a©ψ at w. By (i) it follows

that both (iii) ϕ ∨ ψ and (iv) a(ϕ ∨ ψ) are falsified at w. By (iii) it follows that (v) ϕ is

falsified at w and (vi) ψ is falsified at w. From (ii), (v) and (vi) it follows that (vii) aϕ is

satisfied at w and (viii) aψ is satisfied at w. From (iv) there is a world u such that (x)

M1 satisfies ϕ ∨ ψ at u. By (vii) and (viii), ϕ and ψ are satisfied at u, which contradicts

(x). QED

More importantly, the usual inductive reasoning allows us to establish that any

derivable inference can be checked semantically:

Proposition 4.4.4. [Soundness] All rules of Kn are sound for frame validity, for arbitrary

frames, that is, the conclusion of each given rule is valid on all frames that validate the premisses

of that rule.
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Proof. Let F be some fixed arbitrary frame. We will skip the proof of frame validity for

the standard structural rules and for the standard rules for conjunction and disjunction,

and concentrate below on the distinctive rules ofKn.

Rule (©̀/) : Assume that (a) F 
 (A⇒ ϕ,B) and (b) F 
 (A ⇒ `ϕ,B). Suppose that

F 1 A, ©̀ϕ⇒ B. Then, there are a modelM = 〈F ,V〉 and a world w inM such that

M,w 1 A, ©̀ϕ⇒ B. From this we have that (c)M,w 
 α for every α ∈ A, (d)M,w 
 ©̀ϕ

and (e)M,w 1 β for every β ∈ B. By (c), (e) and (a) it follows that (f)M,w 
 ϕ. Now

from (c), (e) and (b) it follows that (g)M,w 
 `ϕ. By the definition of valuation, (f) and

(g), we conclude thatM,w 1 ©̀ϕ. This contradicts (d).

Rule (/©̀) : Assume that (a) F 
 (A, ϕ,`ϕ⇒ B) and suppose that (b) F 1 (A⇒ ©̀ϕ,B).

By (b) there are a modelM and a world w such that (c)M,w 
 α for every α ∈ A, (d)

M,w 1 ©̀ϕ and (e)M,w 1 β for every β ∈ B. By (a), (c) and (e) we have thatM,w 1 ϕ

orM,w 1 `ϕ, and soM,w 
 ©̀ϕ, which contradicts (d).

Rule (a©/) : Assume that (a) F 
 (A⇒ ϕ,aϕ,B) and suppose that (b) F 1 (A, a©ϕ⇒ B).

By (b) there are a modelM and a world w such that (c)M,w 
 α for every α ∈ A, (d)

M,w 
 a©ϕ and (e)M,w 1 β for every β ∈ B. By (a), (c) and (e) we have thatM,w 
 ϕ

orM,w 
 aϕ, and soM,w 1 a©ϕ, contradicting (d).

Rule (/a©) : Assume that (a) F 
 (A, ϕ⇒ B) and (b) F 
 (A,aϕ ⇒ B). Suppose that

F 1 A⇒ a©ϕ,B. Then, there are a model M and a world w in M such that M,w 1

A⇒ a©ϕ,B. From this we have that (c)M,w 
 α for every α ∈ A, (d)M,w 1 a©ϕ and

(e) M,w 1 β for every β ∈ B. By (c), (e) and (a) we have that (f) M,w 1 ϕ, and from

(c), (e) and (b) it follows that (g)M,w 1 aϕ. By (f) and (g) we haveM,w 
 a©ϕ, which

contradicts (d).

Rule (`a) : By contraposition assume that F 1 (a[B],`ϕ ⇒ `[A]). Then, there are a

modelM and a state u inM such that (i)M,u 
 aβ for every β ∈ B, (ii)M,u 
 `ϕ and

(iii)M,u 1 `α for every α ∈ A. By (ii) there exists a world v inM such that (iv) uRv

and (v)M, v 1 ϕ. It follows, by (iii) and (iv), that (vi)M, v 
 α for every α ∈ A. From (i)

and (iv) it follows that (vii)M, v 1 β for every β ∈ B. By (v), (vi) and (vii) we conclude

thatM, v 1 A⇒ ϕ,B, therefore F 1 A⇒ ϕ,B.

Rule (a`) : By contraposition assume that F 1 (a[B] ⇒ aϕ,`[A]). Then, there are a

modelM and a state w inM such that (i)M,w 
 aβ for every β ∈ B, (ii)M,w 1 aϕ

and (iii)M,w 1 `α for every α ∈ A. By (ii) there exists a world z inM such that (iv)
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wRz and (v)M, z 
 ϕ. It follows, by (iii) and (iv), thatM, z 
 α for every α ∈ A. From

(i) and (iv) it follows that (vii)M, z 1 β for each β ∈ B. By (v), (vi) and (vii) we conclude

thatM, z 1 A, ϕ⇒ B, therefore F 1 A, ϕ⇒ B. QED

As an immediate application of the above soundness result, we may transfer the

results in Prop. 4.4.2 to our sequent system, and conclude that the consequence rela-

tion `n associated to Kn is in fact a-undetermined and `-inconsistent. For the same

reason, the results in Prop. 4.3.1 may be transferred to our semantics. With little effort,

results analogous to those in Prop. 4.3.2 concerning the �-ordinary connectives origi-

nally characterized by way of our sequent system may also be restated in our present

modal semantical framework, in which those connectives are conveniently interpreted.

The connections between the two previous approaches will in fact be strengthened by

the completeness result to be proven in the next section.

4.5 Completeness

Recall from Section 4.2 that a theory Σ1 and a cotheory Σ0 define a closed theory

pair if Σ1 ∪ Σ0 = L. For closed theory pairs it will often be simpler thus to refer to the

cotheory Σ0 as Σ1, and we shall follow such policy from this point on, calling the single

theory Π saturated if 〈Π,Π〉 forms a closed (and obviously unconnected) theory pair.

Following the definition of gcr from Section 4.3, we will concentrate below on the gcr `

defined by the deductive system for Kn. Given a set of sentences Ψ, by dΨe we will

denote the theory {ψ : Ψ ` ψ}, and by bΨcwe will denote the cotheory {ψ : ψ ` Ψ}.

The interaction rules of our systemKn allow us to prove some useful properties of

saturated theories:

Lemma 4.5.1. For any saturated theory Σ:

(i) `−1[Σ] is a theory (ii) a−1[Σ] is a cotheory

Item (i). Assume that `−1[Σ] ` ϕ and suppose by reductio that ϕ < `−1[Σ], that is, `ϕ ∈

Σ. By the assumption we know that there is some derivable sequent ϕ1, ϕ2, . . . , ϕn ⇒ ϕ

inKn where {ϕ1, ϕ2, . . . , ϕn} ⊆ `−1[Σ]. From this sequent, using rule (`a) it follows that

`ϕ ⇒ `ϕ1,`ϕ2, . . . ,`ϕn is derivable in Kn. Given that Σ is a theory, ∨ is `-ordinary,

and `ϕ ∈ Σ, then `ϕ1 ∨ `ϕ2 ∨ . . . ∨ `ϕn ∈ Σ. But Σ is also saturated, thus `ϕi ∈ Σ for

some 1 ≤ i ≤ n, by Prop. 4.2.3(1). It follows that ϕi < `−1[Σ]. Absurd.
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[Item (ii)] This is analogous to the previous item, but we now use rule (a`), the fact

that ∧ is `-ordinary and Prop. 4.2.3(2). Details are safely left to the reader. QED

Let WS be the set of all saturated theories ofKn. Define over WS the following binary

relation RS:

Γ RS ∆ iff `−1[Γ] ⊆ ∆ ⊆ a−1[Γ]

The canonical frame is defined as the structure FS = 〈WS,RS〉.

The two following auxiliary results will be helpful in establishing the proof of the

Canonical Model Lemma, further on.

Lemma 4.5.2. Let Σ be a saturated theory. Then `ϕ ∈ Σ if and only if there is a saturated

theory Π such that Σ RS Π and ϕ < Π.

Proof. Assume first that there is some Π such that Σ RS Π and ϕ < Π. Since ϕ < Π and

`−1[Σ] ⊆ Π it follows that ϕ < `−1[Σ]. From this we conclude that `ϕ ∈ Σ.

Conversely, assume that `ϕ ∈ Σ. Suppose α ∈ `−1[Σ] and β < a−1[Σ], and thus

`α < Σ and aβ ∈ Σ. Recall, by Lemma 4.5.1, that `−1[Σ] is a theory and a−1[Σ] is a

cotheory. We need to show that there is some saturated theory Π such that α ∈ Π and

β ∈ Π, from which it will follow that Σ RS Π, and such thatϕ < Π. We claim that the pair

P = 〈P1,P0〉 =
〈
`−1[Σ],

⌊
a−1[Σ] ∪ {ϕ}

⌋〉
is `-unconnected. Suppose instead, by reductio,

that`−1[Σ] ` ϕ,a−1[Σ]. It follows that there are finite sequences of sentences α1, . . . , αm <

`−1[Σ] and β1, . . . , βn ∈ a−1[Σ] such that α1, . . . , αm ⇒ ϕ, β1, . . . , βn is derivable. Call such

sequent Seq. Notice that αi < `−1[Σ] means that (a) `αi ∈ Σ, for every 1 ≤ i ≤ m, and

β1, . . . , βn ∈ a−1[Σ] means that (b) aβ j ∈ Σ, for every 1 ≤ j ≤ n. From Seq, using rule (`a)

it follows that aβ1, . . . ,aβn,`ϕ⇒ `α1, . . . ,`αm is also derivable. In view of Prop. 4.3.4,

from the latter sequent and facts (a) and (b) we may conclude that `ϕ < Σ, which

conflicts with our initial assumption.

Now that we know that the pair P is unconnected, we may use Prop. 4.2.1 to extend

it to a saturated unconnected pair P? = 〈Π,Π〉. By construction, α ∈ P1 and β, ϕ ∈ P0,

so it follows that α ∈ Π and β ∈ Π, and also that ϕ < Π. QED

Lemma 4.5.3. Let Σ be a saturated theory. Then aϕ ∈ Σ if and only if ϕ < Π for every

saturated theory Π such that Σ RS Π.
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Proof. For the left to right direction assume that aϕ ∈ Σ, that is (i) ϕ < a−1[Σ]. Suppose

for an arbitrary saturated theory Π that (ii) ΣRSΠ. By (ii), (i) and definition of RS we

conclude that ϕ < Π.

For the right to left direction assume, by contraposition, that (a) aϕ < Σ. We claim

that the pair P = 〈P1,P0〉 =
〈⌈
{ϕ} ∪ `−1[Σ]

⌉
,a−1[Σ]

〉
is a `-disconnected theory pair

— remember, from Lemma 4.5.1, that a−1[Σ] is a cotheory. Otherwise we have that

`−1[Σ], ϕ ` a−1[Σ]. It follows that there are finite sequences of sentences α1, . . . , αm <

`−1[Σ] and β1, . . . , βn ∈ a−1[Σ] such that α1, . . . , αm, ϕ ⇒ β1, . . . , βn is derivable. Notice

that αi < `−1[Σ] means that (b) `αi ∈ Σ, for every 1 ≤ i ≤ m, and β1, . . . , βn ∈ a−1[Σ]

means that (c) aβ j ∈ Σ, for every 1 ≤ j ≤ n. Using the rule (a`) in the latter sequent it

follows that aβ1, . . . ,aβn,aϕ ` `α1, . . . ,`αm is derivable. By this sequent, Prop. 4.3.4,

facts (b) and (c) we may conclude that aϕ ∈ Σ, which contradicts (a).

By Prop. 4.2.1 there is thus a closed disconnected theory pair 〈Π,Π〉 that extends P.

Since a−1[Σ] ⊆ Π, then Π ⊆ a−1[Σ]. We also have, by construction, that `−1[Σ] ⊆ Π and

ϕ ∈ Π. In sum, for this particular Π, we have that ΣRSΠ and ϕ ∈ Π. QED

We define the canonical modelMS as the structure 〈FS,VS〉whereFS is the canonical

frame and VS is the valuation defined by:

VS(p) = {Γ ∈WS : p ∈ Γ}

In the proof of the following result it will help to work with the non-canonical measure

of sentence complexity given by the function ` : L →N, recursively defined as follows:
`(p) = 0 if p ∈ P

`(ϕ > ψ) = 1 + max{`(ϕ), `(ψ)} if > ∈ {∧,∨}
`(#ϕ) = 1 + `(ϕ) if # ∈ {`,a}
`( #©ϕ) = 2 + `(ϕ) if #© ∈ {©̀, a©}

Lemma 4.5.4. [Canonical Model]

In the canonical model, for any saturated theory Γ and any sentence ϕ:

MS,Γ 
 ϕ if and only if ϕ ∈ Γ

Proof. The proof is by induction over `(ϕ). The base case (`(ϕ) = 0) is trivial, using

(id) and the definition of the canonical model. Assume now, by Induction Hypothesis,

that MS,Γ 
 ϕ iff ϕ ∈ Γ, for any saturated theory Γ and for every sentence ϕ such

that `(ϕ) < k. We will detail below the ‘non-local’ cases involving one of the modal

negations and one of the restoration connectives.
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[`(`ψ) = k] By the definition of satisfaction, we have MS,Γ 
 `ψ iff MS,∆ 1 ψ for

some saturated theory ∆ such that Γ RS ∆. Since `(`ψ) = `(ψ) + 1, then `(ψ) < k, thus the

Induction Hypothesis applies and allows us to conclude thatMS,∆ 1 ψ iff ψ < ∆. From

Lemma 4.5.2 we know that there is a saturated theory ∆ such that Γ RS ∆ and ψ < ∆ if

and only if `ψ ∈ Γ. Summing up, we may conclude thatMS,Γ 
 `ψ iff `ψ ∈ Γ.

[`(©̀ψ) = k] Suppose first that ©̀ψ ∈ Γ. In view of the derivability of ©̀ψ,`ψ,ψ ⇒

(Prop. 4.3.1), from Prop. 4.3.4 we conclude that either ψ < Γ or `ψ < Γ. Given that

both `(ψ) < `(©̀ψ) and `(`ψ) < `(©̀ψ), the Induction Hypothesis guarantees that ψ < Γ

iff MS,Γ 1 ψ, and also that `ψ < Γ iff MS,Γ 1 `ψ. By the definition of satisfaction

we know that MS,Γ 1 ψ or MS,Γ 1 `ψ if and only if MS,Γ 
 ©̀ψ. It follows from

©̀ψ ∈ Γ, thus, that MS,Γ 
 ©̀ψ. For the converse, suppose now that MS,Γ 
 ©̀ψ.

By the definition of satisfaction, the definition of ` and the Induction Hypothesis, we

know that (a) `ψ < Γ or (b) ψ < Γ. In case (b), in view of the derivability of⇒ ψ, ©̀ψ

(Prop. 4.3.1), from Prop. 4.3.4 we conclude that ©̀ψ < Γ, that is, ©̀ψ ∈ Γ; in case (a) the

same conclusion follows in view of the derivability of⇒ `ψ, ©̀ψ. QED

As usual, from the above lemma we immediately conclude the following:

Proposition 4.5.1. [Completeness] If Γ |= ∆ then Γ ` ∆.

Proof. Suppose by contraposition that Γ 0 ∆. By Prop. 4.2.1 there is a closed unconnected

pair 〈Γ?,∆?
〉 that extends 〈dΓe , b∆c〉. It follows that Γ? is a saturated theory and that

∆? = Γ?. By the Canonical Model Lemma, we have MS,Γ? 
 ϕ iff ϕ ∈ Γ?. Thus, we

conclude that Γ? 6|= ∆?, and by monotonicity it follows that Γ 6|= ∆. QED

4.6 Extensions ofKn

In the literature it is common to find the minimal system of normal modal logic

extended by adding new axioms and to see the resulting system shown to be sound

and complete with respect to a class of frames in which the accessibility relation enjoys

certain appropriate properties. As an illustration of how this strategy may be applied

to our systems with negative modalities, we introduce in this section two systems that

extendKn. The system T n extendsKn by adding the dual axiomatic rules⇒ ϕ,`ϕ (rf1)

andaϕ,ϕ⇒ (rf2). By adding the axiomatic rules``ϕ⇒ ϕ (sm1) andϕ⇒ aaϕ (sm2) toKn,

we define the system Bn. The gcrs `Tn and `Bn correspond, respectively, to the deductive

systems associated to T n and Bn.
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Recall that a binary relation R is called reflexive if xRx holds for every x, and is

called symmetric if xRy implies yRx. In what follows we will show that T n is sound

and complete with respect to the class of reflexive frames (i.e., the class of frames with a

reflexive accessibility relation), and similarly for Bn and the class of symmetric frames.

Proposition 4.6.1. [Correspondence] Let F = 〈W,R〉 be a frame. Then:

(1.1) R is reflexive only if F 
⇒ ϕ,`ϕ and F 
 aϕ,ϕ⇒
(1.2) R is reflexive if F 
⇒ ϕ,`ϕ or F 
 aϕ,ϕ⇒
(2.1) R is symmetric only if F 
 ``ϕ⇒ ϕ and F 
 ϕ⇒ aaϕ
(2.2) R is symmetric if F 
 ``ϕ⇒ ϕ or F 
 ϕ⇒ aaϕ

Proof. (1.1) Assume that (i) R is reflexive and suppose that (ii) F 1 ⇒ ϕ,`ϕ, for some

sentence ϕ. It follows from (ii) that (iii)M0,w 1 ϕ and (iv)M0,w 1 `ϕ for some model

M0 of F and some w in M0. From (i) and (iv), the definition of valuation gives us

(v)M0,w 
 ϕ. This contradicts (iii). Suppose now that F 1 aϕ,ϕ⇒. Then, there are a

modelM1 and a world u such thatM1,u 
 ϕ andM1,u 
 aϕ. From the latter, invoking

the reflexivity of R, we conclude thatM1,u 1 ϕ. Contradiction.

(1.2) Suppose that F is not reflexive. Then, there is a world m such that 〈m,m〉 < R. Let

C be the set {z : 〈m, z〉 ∈ R}. Let p be a propositional variable and letM2 = 〈F ,V〉 be a

model such that V(p) = C. Obviously m < V(p), thusM2 falsifies p at m. Moreover, by

construction of C, we have x ∈ V(p) for every x such that 〈m, x〉 ∈ R. By the definition

of valuation,M2 falsifies `p at m. Thus,M2 falsifies⇒ p,`p at m. If we enrichM2 by a

propositional variable q such that V(q) = C, we see thatM2 falsifies aq, q⇒ at m.

(2.1) Assume that R is symmetric. Suppose that F 1 ``ϕ ⇒ ϕ. There is thus a model

M0 and a state w such that (i)M0,w 
 ``ϕ and (ii)M0,w 1 ϕ. From (i), there must be

some z such that (iii) 〈w, z〉 ∈ R and (iv)M0, z 1 `ϕ. The symmetry of R allows us to

conclude (v) 〈z,w〉 ∈ R from (iii), and from (iv) and (v) it follows thatM0,w 
 ϕ. This

contradicts (ii). If we suppose that F 1 ϕ ⇒ aaϕ we reach a contradiction through a

similar line of reasoning.

(2.2) Suppose that R is not symmetric. Then there are m,n such that 〈m,n〉 ∈ R yet

〈n,m〉 < R. Let C be the set {z : 〈n, z〉 ∈ R}. Let p, q be propositional variables and let

M2 = 〈F ,V〉 be a model where V(p) = C and V(q) = C. Since m < V(p), then M2

falsifies p at m. Given that, for arbitrary z, we have that 〈n, z〉 ∈ R implies z ∈ V(p), we

conclude by the definition of valuation thatM2 falsifies `p at n. Once 〈m,n〉 ∈ R, then

M2 satisfies ``p at m. Thus, M2 falsifies ``p ⇒ p at m. Similarly, M2 also falsifies
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q⇒ aaq at m. QED

Soundness ofT n andBn are corollaries of the ‘only-if’ part of Prop. 4.6.1. To illustrate

some differences between those systems we invite the reader to use rules (sm1) and

(sm2) of Bn, on the one hand, and the soundness of T n, on the other hand, to check

that:

Proposition 4.6.2. Sequents ©̀ϕ ⇒ ©̀`ϕ and a©aϕ ⇒ a©ϕ are derivable in Bn but not in

T
n.

Proof. Assume that there is a model M = 〈W,R,V〉, where R is symmetric, and w is

a world in M such that (i) M,w 
 ©̀ϕ and (ii) M,w 
 ©̀ψ. By (ii) we have that (iii)

M,w 1 `ϕ and (iv)M,w 1 ``ϕ. By (ii) and (iv) it follows that (v)M,w 1 ϕ. By (iii)

there is a world w2 such that wRw2 and (vi)M,w2 1 `ϕ. Since R is symmetric w2Rw, by

(vi) we have thatM,w 
 ϕ. It is an absurd.

The sequent ©̀ϕ ⇒ ©̀`ϕ is not derivable in T n. Consider the reflexive frame F

such that W = {u, v} and R = {〈u,u〉, 〈u,w〉, 〈w,w〉}. LetM be a model based on F such

that V(p) = ∅, for some atomic p. It follows that M,u 
 `p and M,u 
 ``p. Thus,

M,u 1 ©̀`p. Since thatM,u 1 p, thenM,w 
 ©̀p. We conclude from the above thatM

is a counter-model for ©̀ϕ ⇒ ©̀`ϕ. QED

It might be interesting to contrast the latter result concerning the propagation of con-

sistency through the paraconsistent negation and the dual propagation of determined-

ness through the paracomplete negation to the earlier general propagation results in

Prop. 4.4.3.

Completeness will be attained next with the help of the following auxiliary results.

Lemma 4.6.1. Assume the theories Γa and Γb to be closed with respect to `Tn and `Bn respectively.

Then:

1. In T n we have that ϕ ∨ `ϕ ∈ Γa.

2. In T n we have that ϕ ∧ aϕ < Γa.

3. In Bn we have that ``ϕ ∈ Γb implies ϕ ∈ Γb.

4. In Bn we have that ϕ ∈ Γb implies aaϕ ∈ Γb.
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Proof. The first two facts follow from closure of Γa and the obvious derivability of ⇒

ϕ∨`ϕ andϕ∧aϕ⇒ inT n, in view of axiomatic rules (rf1) and (rf2). The remaining facts

are easy consequences of closure of Γb and the axiomatic rules (sm1) and (sm2). QED

We should guarantee that the canonical construction yields the appropriate prop-

erties:

Proposition 4.6.3. [Canonical Systems] The systems T n and Bn are canonical.

Proof. For T n we have to show, for the canonical frame FS, that 〈Γ,Γ〉 ∈ RS for all

Γ ∈ WS, that is, `−1[Γ] ⊆ Γ ⊆ a−1[Γ]. Suppose that ϕ ∈ `−1[Γ]. Then, `ϕ < Γ. Since Γ is

a closed theory and, by Lemma 4.6.1(1) and Prop. 4.2.3(1), ϕ ∨ `ϕ ∈ Γ, it follows that

ϕ ∈ Γ. To show that Γ ⊆ a−1[Γ] the reasoning is similar, in view of Lemma 4.6.1(2) and

Prop. 4.2.3(2).

For Bn assume that Γ,∆ are closed theories such that 〈Γ,∆〉 ∈ RS, that is, `−1[Γ] ⊆

∆ ⊆ a−1[Γ]. If ϕ ∈ `−1[∆], then `ϕ < ∆. From this we have that `ϕ < `−1[Γ], therefore

``ϕ ∈ Γ. By Lemma 4.6.1(3) we conclude that ϕ ∈ Γ. Assume now that ϕ ∈ Γ. By

Lemma 4.6.1(4), aaϕ ∈ Γ. It follows that aϕ < a[Γ]. Since ∆ ⊆ a−1[Γ], then aϕ < ∆, that

is, ϕ ∈ a−1[∆]. Thus, `−1[∆] ⊆ Γ ⊆ a−1[∆], that is 〈∆,Γ〉 ∈ RS. QED

Let |=T be the entailment relation defined with respect to the class of all reflex-

ive frames, and |=B be defined for the class of all symmetric frames. An immediate

consequence of Prop. 4.6.3, proven exactly as in Prop. 4.5.1, is:

Corollary 4.6.1. [Completeness for X ∈ {T ,B}] For every Γ ∪ ∆ ⊆ L:

Γ |=X ∆ implies Γ `Xn ∆

Having established, for both T n and Bn, that all inferences verified semantically

are also derivable in the next section we will study the role of these stronger modal

systems in helping to more naturally restore inferences of some standard logical systems

by means of Derivability Adjustment Theorems.

4.7 Recovering the Lost Perfection

Let ∼ be a unary negation symbol. Some standard rules for negation that could be

added to the systemDL are:
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A⇒ ϕ,B
(∼/)

A,∼ϕ⇒ B

It is easy to see that such rules would characterize ∼ as what we have, in Section 4.2,

called an ordinary negation, respecting both statements (Cns) and (Dtm). Legitimate

non-classical negations, nonetheless, while obviously failing either consistency or deter-

minedness, may still respect other typical rules of negation. We list below, in particular,

some standard sequent rules involving negation and the standard connectives modeled

by a bounded distributive lattice:

A,∼ϕ,∼ψ⇒ B
(dm1.1)

A,∼(ϕ ∨ ψ)⇒ B
A⇒ ∼ϕ,B A⇒ ∼ψ,B

(dm1.2)
A⇒ ∼(ϕ ∨ ψ),B

A⇒ ∼ϕ,∼ψ,B
(dm2.1)

A⇒ ∼(ϕ ∧ ψ),B
A,∼ϕ⇒ B A,∼ψ⇒ B

(dm2.2)
A,∼(ϕ ∧ ψ)⇒ B

A⇒ ϕ,B
(dm3.1)

A⇒ ∼∼ϕ,B
A, ϕ⇒ B

(dm3.2)
A,∼∼ϕ⇒ B

(dm4.1)
A,∼> ⇒ B

(dm4.2)
A⇒ ∼⊥,B

We will discuss in this section which of the above rules are derivable and which of them

may be somehow recovered from the viewpoint of each of the sequent systems studied

in the previous sections.

Recall that our language L contains two indigenous symbols for negation, namely,

a and `. For those negations it is not hard to check that:

Proposition 4.7.1. InKn:

1. Rules (dm1.1) and (dm2.1) are derivable for both a and `.

2. Rules (dm1.2) and (dm4.1) are derivable for a.

3. Rules (dm2.2) and (dm4.2) are derivable for `.

4. Rule (dm1.2) fails for `, and rule (dm2.2) fails for a.

5. Rules (dm3.1) fails for a and rule (dm3.2) fails for `.

In T n:
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6. Rule (/∼) is derivable for ` and rule (∼/) is derivable for a.

In Bn:

7. Rule (dm3.1) is derivable for a and rule (dm3.2) is derivable for `.

Moreover, in either T n or Bn (thus, also inKn):

8. Rule (dm3.2) fails for a and rule (dm3.1) fails for `.

9. Rule (∼/) fails for ` and rule (/∼) fails for a.

Proof. Items (1), (2) and (3) follow directly from Prop. 4.3.2(2) and the second half of

Prop. 4.2.4. Items (6) and (7) follow from the characterizing axioms of T n and Bn.

To check the remaining items, the completeness results in Prop. 4.5.1 and Corol. 4.6.1

come in handy. A simple strategy to show that some instance of a given schematic rule

must fail involves falsifying some sequent that is derivable from that rule. On what

concerns item (8), for example, notice that ∼∼p ⇒ p would obviously be derivable

from (dm3.2), for any atomic sentence p. Yet, to falsify the sequent aap⇒ p it suffices

to consider a frame F1 such that W1 = {u, v} and R1 is the total (thus reflexive and

symmetric) relation W1×W1, and consider a modelM such that V(p) = {v}: note indeed

thatM, v 
 p, and uR1v and vR1v implyM,u 1 ap andM, v 1 ap, and thusM,u 
 aap

given that uR1x implies x ∈ {u, v}, while obviously M,u 1 p. Analogously, p ⇒ ∼∼p

would be derivable from (dm3.1), yet in the model just considered we haveM, v 
 p

andM, v 1 ``p, thus falsifying the sequent p⇒ ``p.

For item (4), consider a frame F2 where W2 = {u, v,w} and R2 = {〈u, v〉, 〈u,w〉}, and

a model M′ in which V′(p) = {v} and V′(q) = {w}, for atomic sentences p and q; this

is indeed a model that witnesses the failure of a(p ∧ q) |= (ap ∨ aq) and the failure of

`p ∧ `q |= `(p ∨ q). For item (5) one might consider a frame F2 such that W2 = {u, v}

and R2 = {〈u, v〉}, and consider a modelM′′ such that V′′(p) = {u} and V′′(q) = ∅.

At last, on what concerns item (9), note that the proof of Prop. 4.4.2 still applies

unchanged. QED

The result in Prop. 4.7.1(9) should come as no surprise: As shown in (Marcos, 2005a),

with the exception of degenerate cases, normal modal logics based on a are paracom-

plete and modal logics based on ` are paraconsistent. It is interesting to call attention,
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though, to a particular byproduct of the proof of Prop. 4.7.1(8): the counter-models

presented to aap |= p and to p |= ``p are based on equivalence relations, and so one

should not expect these two inferences to be valid for any of the usual classes of frames

characterizing modal logics weaker than S5 — in other words, one might say that the

intuitionistic-like negation has indeed a good reason to fail double negation elimina-

tion, and analogously the paraconsistent negation may reasonably be expected to fail

double negation introduction.

Notice now that the rules that are shown to fail in the previous proposition may

often be restored in one way or another, with the help of the connectives expressing

consistency and determinedness in our rich modal language. If, for instance, the fol-

lowing restored versions of our missing sequent rules turn out to be derivable, this will

help us in finding conditions under which one can recover some of the lost inferences:

A, ϕ⇒ B
(/a)◦

A⇒ aϕ, a©ϕ,B
A⇒ ϕ,B

(`/)◦
A, ©̀ϕ,`ϕ⇒ B

A⇒ `ϕ,B A⇒ `ψ,B
(dm1.2)◦

A, ©̀ϕ, ©̀ψ⇒ `(ϕ ∨ ψ), a©(ϕ ∨ ψ),B

A,aϕ⇒ B A,aψ⇒ B
(dm2.2)◦

A, ©̀(ϕ ∧ ψ),a(ϕ ∧ ψ)⇒ a©ϕ, a©ψ,B

A⇒ ϕ,B
(dm3.1)◦

A, ©̀ϕ⇒ aaϕ, a©aϕ,B
A, ϕ⇒ B

(dm3.2)◦
A, ©̀`ϕ,``ϕ⇒ a©ϕ,B

Rules (/a)◦ and (`/)◦ are obviously derivable from the basic rules (/a©) and (©̀/). The

remaining rules above may be checked with the help of the following sequents:

Proposition 4.7.2. InKn the following are derivable:

(SD12) ©̀ϕ, ©̀ψ,`ϕ,`ψ⇒ `(ϕ ∨ ψ), a©(ϕ ∨ ψ)
(SD22) ©̀(ϕ ∧ ψ),a(ϕ ∧ ψ)⇒ aϕ,aψ, a©ϕ, a©ψ
(SD31) ©̀ϕ,ϕ⇒ aaϕ, a©aϕ

(SD32) ©̀`ϕ,``ϕ⇒ ϕ, a©ϕ

Proof. For (SD12), suppose by reductio that there is a modelMwith a world w in which

©̀ϕ, ©̀ψ,`ϕ,`ψ are all satisfied and `(ϕ ∨ ψ), a©(ϕ ∨ ψ) are both falsified. It follows

from the joint satisfaction of ©̀ϕ and `ϕ at w that ϕ must by falsified at w. The same

reasoning applies to ψ, and thus we may conclude that ϕ∨ψ is falsified at w. From the

latter, given that a©(ϕ∨ψ) is also falsified at w, we conclude thatϕ∨ψ is falsified indeed
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at every world accessible to w. Note now that the satisfaction of `ϕ at w demands in

particular the existence of a world w′ accessible to w. Given that `(ϕ ∨ ψ) is falsified

at w, we must also conclude that ϕ∨ψ is satisfied at w′. We reach thus a contradiction.

For (SD31), suppose by reductio that in the world w of a modelM the sentences ©̀ϕ

and ϕ are both satisfied (forcing thereby ϕ to be satisfied at any world accessible to w),

while the sentences aaϕ and a©aϕ are both falsified (forcing ϕ to be falsified at any

world accessible to w). But to falsify aaϕ at w there must first of all exist some world w′

accessible from w. Contradiction.

Items (SD22) and (SD32) are proved similarly. In all cases, completeness may be

used in the end to transfer the semantically verified results to facts about the proof

formalism. QED

It is instructive to contrast the latter result to what we had learned from items (4) and (5)

from Prop. 4.7.1.

Instead of axiomatizing Classical Logic (CL) simply by adding rules (/∼) and (∼/) to

DL, we will here axiomatize it in the languageL by adding the restored rules (/a)◦ and

(`/)◦ to DL, plus the two following rules: ⇒ ©̀ϕ (cns) and a©ϕ⇒ (dtm). The associated

gcr will be referred to as `cl. The intuition behind such system is precisely that CL is

to be obtained by explicitly imposing a universal consistency assumption as well as a

universal determinedness assumption.

At this point we can finally state:

Proposition 4.7.3. [Derivability Adjustment Theorem] Let Π#
∼

be the result of uniformly

substituting each occurrence of the symbol ∼ in each sentence of Π by an occurrence of a unary

symbol # ∈ {a,`}. Then, inferences from CL may be recovered from T n in the following way:

Γ#
∼
`cl ∆#

∼
iff there are finite sets Σc,Σd ⊆ L such that ©̀[Σc],Γ `Tn ∆, a©[Σd]

Furthermore, Σc may be constrained above to a finite collection of sub-sentences of Γ, and Σd

may be constrained to a finite collection of sub-sentences of ∆.

Proof. For the right-to-left direction, first one should notice that all the rules of T n are

classically valid. Any derivation constructed inT n may then in principle be reproduced

as a derivation associated to the gcr `cl, any occurrence of a sentence of the form ©̀ϕ

on the left-hand side of a given sequent may be eliminated by cut using the axiomatic
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rule (cns), and any occurrence of a sentence of the form a©ϕ on the right-hand side of a

given sequent may be eliminated by cut using the axiomatic rule (dtm).

For the left-to-right direction, one may proceed by induction on the structure of

the derivations. The base case (0-step derivations) is trivial, and it suffices to take

Σc = Σd = ∅. The idea for the remainder of the construction is to collect consistency

assumptions and determinedness assumptions on the fly: for each further step of aCL-

derivation intended to witness the fact that A#
∼
`cl B#

∼
, for appropriate finite sets A ⊆ Γ

and B ⊆ ∆, check whether a rule has been used that does not belong to the common core

of the sequent systems for CL and for T n, in that case, construct the corresponding

step in the T n-derivation by using the qualified versions of the same rules (taking

into account Prop. 4.7.1 and the rules derived with the help of Prop. 4.7.2). For a bit

more of detail, suppose the construction of the classical derivation has proceeded by

applying rules (dm1.1) or rule (dm2.1) at a given derivation step. Then, according to

Prop. 4.7.1(1), exactly the same derivation step may be taken in Kn (thus also in T n).

Similarly, according to items (2) and (3) of Prop. 4.7.1, the same steps may be taken

inKn (or in T n) in case (dm1.2) is used with respect to a or in case (dm2.2) is used with

respect to `. Now, if (dm1.2) is expected to be used with respect to `, then (dm1.2)◦

should be used instead, and if (dm2.2) is expected to be used with respect to a, then

(dm2.2)◦ should be used instead — notice that in both cases there will be consistency

and determinedness assumptions added to the contexts at the root of the derivation,

that is, there will be sentences added to Σc and to Σd. Finally, notice that any derivation

step using rule (/∼) in a classical derivation may still be taken in T n with respect to `,

in view of Prop. 4.7.1(6); with respect to a one should use the derivable rule (/a)◦

instead — and in this case an appropriate sentence will be added to Σd. Dually, any

classical derivation step using rule (∼/) may be reproduced in T n with respect to a,

or be replaced, with respect to `, by a step making use of rule (`/)◦, demanding the

addition of an appropriate sentence to Σc. QED

The above result could alternatively be checked by using the appropriate consis-

tency and determinedness assumptions to semantically constrain the T n-models in

order to emulate the corresponding CL-models.

In the case of our basic systemKn, a counterpart for the above result would not try

to recover all classical inferences. The natural candidate, in that case, would be a weaker

system, which we briefly mention. Let DM be the system obtained by adding rules

(dm1.1), (dm1.2), (dm2.1) and (dm2.2) to systemDL, letDMi beDMplus (dm3.1), and
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letDMe beDM plus (dm3.2). Adding both (dm3.1) and (dm3.2) toDM characterizes

the so-called De Morgan Logic (cf. (Font, 1997)). Now, other Derivability Adjustment

Theorems are to be expected if we fix our attention on the relation betweenDMi and the

paracomplete fragment ofKn, or on the relation betweenDMe and the paraconsistent

fragment of Kn. Furthermore, if Bn is used instead of T n then less consistency and

determinedness assumptions will need to be collected, as iterated negation is more

well-behaved by the very design of Bn.

A fully detailed exploration of the latter results on derivability adjustment is left as

matter for a future study.

4.8 Closing Remarks

We have started our study from the logic underlying bounded distributive lattices

and investigated in this chapter the logic Kn that upgrades the former by adding a

modal paraconsistent negation and a modal paracomplete negation, and also adds

modal operators internalizing appropriate notions of consistency and determinedness

into the object-language level. We have characterized the properties of our connectives

from an abstract viewpoint, proposed a sequent-style proof formalism for the minimal

normal system enjoying such properties in our chosen language, and proven its com-

pleteness with respect to the expected standard Kripke-like semantics. We have also

considered two extensions of our basic system, adding axioms connected to versions

of excluded middle, pseudo-scotus and forms of double negation manipulation, and

we have discussed how these systems allow one to recover the inferences of some log-

ics lying in between De Morgan Logic and Classical Logic. Studying other extensions

should be instigating inasmuch as they are attained by adding axioms that express

intuitively important properties of negation, such as the ‘controllable forms’ of consis-

tency and of determinedness expressed by `ϕ,`(`ϕ) ⇒ and⇒ a(aϕ),aϕ, which are

valid in euclidean frames. Axioms that involve the interaction between the two non-

classical negations are also attractive, such as `ϕ⇒ aϕ, valid in functional frames, or

as aϕ,`(aϕ)⇒ and⇒ a(`ϕ),`ϕ, valid in transitive frames, or as ``ϕ⇒ aaϕ, valid

in confluent (a.k.a. Church-Rosser) frames.

Nonetheless, in producing deductive extensions of the basic system without ex-

tending its language, the standard Kripke semantics which we have employed has a

somewhat serious shortcoming. Indeed, even though we have thought of our paracom-
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plete negation as independent of our paraconsistent negation, both T n and Bn were

built by adding not just one but two ‘dual’ axioms. It would have seemed more appro-

priate, however, to devise complete systems in which each one of those axioms could

be introduced in separate. An obvious alternative to deal with such difficulty related to

frame incompleteness is simply to change the semantical framework. Such a strategy

is common in the literature on systems of intuitionistic modal logics, in which a second

relation (a quasi ordering) is added to the frame, coupled with the consideration of

truth-increasing valuations. This seems very well-motivated, and would allow one to

prove in particular that truth is hereditarily preserved towards the future, according

to the order introduced by the second relation, and falsity is hereditarily preserved

towards the past, according to the same order (for the positive case, cf. (Celani; Jansana,

1997); for an application to the case of our modal negations, cf. (Dunn; Zhou, 2005)).

The additional advantage of this alternative framework, besides bringing the heredity

conditions to the fore, is that it allows one to add each axiom in separate, and con-

tinue thinking thus about the two non-classical negations as really independent of each

other. However, that strategy cannot be extended without modification to our richer

language. The reason is simple: the restoration connectives were in a sense designed to

fail the heredity conditions, as they allow one to recover standard classic-like models

when they are applied to sentences of a given theory. It rests as a challenge, thus, to iden-

tify the right semantic framework in which the study of extensions of our system Kn

should be done. For one thing, from (Marcos, 2005a) we already know that if we add

a classical implication connective→ to Kn, any normal modal logic may be rewritten

in the minimal language containing just such→ and the paraconsistent negation `; in

this case indeed the usual classical connectives, the usual box-plus and diamond-plus

connectives, the dual paracomplete negationa, and the restoration connectives dealing

with `-consistency and with a-determinedness may all be explicitly defined. There is

also a rich literature (important references include (Došen, 1984; Vakarelov, 1989)) con-

cerning the systems obtained by the addition of an intuitionistic implication instead

of a classical implication — for those systems it is customary to consider interpreta-

tion structures containing two accessibility relations, one to deal with implication and

another one to deal with the non-classical negations. In the present study we have

concentrated however on the implicationless fragment of these logics, to which the

restoration connectives were explicitly added in order to internalize the corresponding

useful meta-theoretical concepts.

Another line of research that we see as potentially fruitful is the investigation of
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matters related to variegated versions of our Derivability Adjustment Theorems, espe-

cially from a semantical perspective. We note that there is a modular way of connecting

‘quasi canonical sequent rules’ such as the main ones we have proposed in this chap-

ter to restrictions concerning the so-called ‘non-deterministic semantics’ (cf. (Avron,

2005; Avron; Konikowska; Zamansky, 2012)). From that viewpoint, one may see how De

Morgan Logic gets associated to four truth-values, where conjunction and disjunction

are interpreted as in Dunn-Belnap matrices, and its negation (both paraconsistent and

paracomplete) is defined according to the so-called truth-order. Furthermore, by adding

rule (/∼) a further determinization is produced, and only three truth-values are left,

as negation ceases to be paracomplete; an analogous phenomenon happens if (∼/) is

added, and negation ceases to be paraconsistent; if both rules are added, Classical Logic

is obtained. Now, if one considers DM from the start, a four-valued semantics is still

available, but negation is non-deterministic: there are two possibilities of output for

each of the four inputs. Such negation may be partially determinized by adding rules

(dm3.1) or (dm3.2); adding both rules would result in the full determinization that

corresponds to De Morgan Logic. Our non-classical negations go the other way round,

by deleting some De Morgan rules, (dm1.2) or (dm2.2). The result of performing this

deletion over DM is that disjunction will also start to behave non-deterministically.

Such modular approach may be easily extended to include the consistency and the de-

terminedness operators, which will also be (non-deterministically) interpretable over

the already mentioned four truth-values (an automated mechanism for uncovering the

semantic aspects of such paraconsistent fragments of DM was launched in (Ciabattoni

et al., 2013)). Our Derivability Adjustment Theorems could then be thought of as ways

of taming non-classicality and controlling non-determinism from a logical viewpoint.

Some of the sequent rules that we have studied are more important than others.

Such is the case of the interaction rules (a`) and (`a), which could be thought of

as a sort of multiple-conclusion sequent calculus contextual generalization of the so-

called ‘Becker’s Rule’, from the traditional modal literature, adapted to the case of

negative normal modalities. To the best of our knowledge, they seem not to have been

proposed before. It is worth noting that by the addition of the usual sequent rules for

classical implication, our system Kn is upgraded into a modal version of the logic of

formal inconsistency BK (see (Avron; Konikowska; Zamansky, 2013)), obtained precisely

by the addition of the already mentioned interaction rules (so, to be sure, Kn plus

classical implication coincides with BK plus interaction rules). Such interaction rules

are indeed absolutely instrumental in warranting the modal character of our systems
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(and, in particular, in guaranteeing that we are dealing with systems respecting the

standard replacement property), and it seems worth studying the classes of paraconsistent

and paracomplete logics that lend themselves in a natural way to reasonable extensions

obtained by the addition of such rules. In a future study we will also show how sequent

systems such as those studied in the present chapter may be seen as particular examples

of the ‘Basic Sequent Systems’ studied in (Lahav; Avron, 2013). In that paper, the authors

have shown how to provide Kripke semantics to such kinds of systems in a way so as to

allow one to semantically obtain confirmations of important proof-theoretic properties

such as cut-admissibility and analyticity. In showing that the mentioned approach

indeed applies to our systems, we will guarantee that one can count on such proof-

theoretic properties, provide alternative completeness proofs and allow for a smoother

extension of our systems to normal systems characterized by other important classes

of frames.



78

5 Conclusion

We studied in this Thesis distinct ways of enriching some modal logics. First,

in the context of fuzzy modal logics, we realized this task semantically. The partition

{[0, i), [i, 1]} is the base for the construction of a fuzzy Kripke semantics that characterize

the modal system K and its extensions with multiple instances of the axiom Gk,l,m,n.

In Chapter 3 we present a Hilbert axiomatization for the regular LAB logics, logics

that contains the positive fragment of classical logic plus one paraconsistent negation.

After that we prove a completeness result for the minimal logic K^ and for some

extensions of it, like the systems S4` and S5`, systems that characterize the same class of

frames that the systems S4 and S5, which are well studied in the literature, see((Cresswell;

Hughes, 2003), (Chellas, 1980)). In this logic the positive modalities and all modalities

studied in Chapter 4 can be defined. In Chapter 4 another form of enrichment of modal

logics is studied. We add to a fragment of positive classical logic, without implication,

the connectives ` and a that intend to represent a paraconsistent negation and a

paracomplete negation respectively, and its associated restoration connectives ©̀ and

a©. Here our minimal logicKn is presented in terms of a sequent calculus, that contains

rules of introduction and elimination for the connectives ∧,∨, ©̀ and a© and rules (`a),

(a`) that express appropriate interactions between our modal negations. The systems

T
n andBn extendKn by adding dual axiomatic rules, and they are sound and complete

with respect to the class of reflexive frames and symmetric frames, respectively.

By means of adequate DATs, we also see that the extensions of Kn, and even

extensions of the simple systemDL, may be used to talk about more expressive systems.

The logics T n and Bn, for example, allow Classical Logic to be recovered, while the

logicsDMi andDMe recover the DeMorgan Logic. These informations are summarized

in the Table 3.

We would like to suggest three more lines of research for future investigations,

besides those cited in the final sections of Chapters 2 and 4. The first of them is related
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Deductive System Recovered Inferences Sequent Rules
T

n Classical Logic K
n
∪ {⇒ ϕ,`ϕ (rf1),aϕ,ϕ⇒ (rf2)

}

B
n Classical Logic K

n
∪ {``ϕ⇒ ϕ (sm1), ϕ⇒ aaϕ (sm2)

}

DM
i DeMorgan Logic DM∪ {dm(3.1)}

DM
e DeMorgan Logic DM∪ {dm(3.2)}

Table 3: Rich logics

to the property of confluence, that is mentioned in different places in this thesis. In

Chapter 2 frames with this property are used to characterize the so called fuzzy modal

logics of confluence. In Chapter 4 we saw that extending Kn with the sequent rule

``ϕ⇒ aaϕ (cnf) produces a system characterized by the class of confluent frames.

The version of confluence axiom studied in Chapter 2 is formulated in terms of the

modalities 2 and ♦, the instances 2ϕ ⊃ ϕ and ϕ ⊃ 2♦ϕ, that express in first-order

logic reflexivity and symmetry respectively, have equivalent negative versions, namely,

`ϕ ∨ ϕ and ``ϕ ⊃ ϕ, that were studied in Chapter 3. What about the general case?

Can we formulate an axiom-schema, using the negative modalities ` and a, similar to

♦k2lϕ ⊃ 2m♦nϕ?

Other investigation that deserves our attention is one that considers multiple para-

consistent negations inside a logic. Restall studied in (Restall, 1997) a logic with multiple

positive and negative diamond-like modal operators, that are paracomplete negations.

The author did not study the case where there are interactions among his negations.

We think that it is possible to propose a logic with two paraconsistent negations by

choosing, in the proof-theoretical presentation, adequate axioms of interaction. An-

other challenge is the case of a logic with more than two paraconsistent negations: how

we can formulate its interaction axioms?

Another interesting work is to investigate if it is possible to propose a semantic

enrichment, similar the one proposed in Chapter 2, to LAB logics and to logics with

negative modalities studied respectively in Chapters 3 and 4.
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APPENDIX A -- MTD in LAB Logics

In what follows let (Ax1) and (Ax2) denote the classical theorems p ⊃ (q ⊃ p) and

(p ⊃ (q ⊃ r)) ⊃ ((p ⊃ q) ⊃ (p ⊃ r)) respectively.

Proposition 3.1.2 Let α and β be formulae of S∧∨⊃` and Γ ⊆ S∧∨⊃`. Given a derivation for

Γ, α ` β, it is possible to build a derivation for Γ ` α ⊃ β.

Proof. The proof is an induction on the length of the derivation β1, β2, . . . , βn of βn from

Γ ∪ {α}, where βn is β.

[Basis] 1-step derivations. There are two cases to consider:

Case 1 β is an axiom

Consider the following derivation
1. β [Axiom]

2. β ⊃ (α ⊃ β) [Ax1]

3. α ⊃ β [MP 1,2]

Case 2 β ∈ Γ ∪ {α}

(a) β ∈ Γ

1. β [Hyp]

2. β ⊃ (α ⊃ β) [Ax1]

3. α ⊃ β [MP 1,2]
Since β ` α ⊃ β, by monotonicity, Γ ` α ⊃ β.

(b) β is α

Note that β ⊃ β is a theorem of LAB Logics. In fact, consider the following

derivation:
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1. β ⊃ ((β ⊃ β) ⊃ β) [Ax1]

2. β ⊃ (β ⊃ β) [Ax1]

3. (β ⊃ ((β ⊃ β) ⊃ β)) ⊃ ((β ⊃ (β ⊃ β)) ⊃ (β ⊃ β)) [Ax2]

4. (β ⊃ (β ⊃ β)) ⊃ (β ⊃ β) [MP 1,3]

5. β ⊃ β [MP 2,4]

[Step] (k+1)-step derivations.

Let D be a derivation for Γ, α ` β with k + 1 steps. Assume by Induction Hypothesis

that there is a derivation for Γ ` α ⊃ βi for every 1 ≤ i ≤ k. We shall show that Γ ` α ⊃ β.

There are three cases to consider:

Case 1 The last step inD is an application of MP on lines i < k + 1 and j < k + 1.

By I.H. we can build the following two derivations:

DerivationD1:
...

p. α ⊃ βi [Justification]

DerivationD2:
...

q. α ⊃ (βi ⊃ β) [Justification]
Let the DerivationD3 be the concatenation ofD1 andD2:

...

p. α ⊃ βi [Justification]
...

p+q. α ⊃ (βi ⊃ β) [Justification]

To conclude the proof add toD3 the following three lines:
p+q+1. (α ⊃ (βi ⊃ β)) ⊃ ((α ⊃ βi) ⊃ (α ⊃ β)) [Ax2]

p+q+2. (α ⊃ βi) ⊃ (α ⊃ β) [MP p+q, p+q+1]

p+q+3. α ⊃ β [MP p, p+q+2]

Case 2 The formula β is `ψ ⊃ `ϕ, that is obtained by an application of (R1) to the pre-

vious theorem ` ϕ ⊃ ψ. Thus, ` β. From the latter there is a derivationD3, with j

steps, that ends with β. Add toD3 the lines j + 1 and j + 2, as illustrated below, to

obtain α ⊃ β.
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...

j. β [Justification]

j+1. β ⊃ (α ⊃ β) [Ax1]

j+2. α ⊃ β [MP j, j+1]

Case 3 The formula β is `ϕ ⊃ ψ that is obtained by an application of (R2) to the previous

theorem ` ϕ. Since ` β, we can build a derivation for α ⊃ β similarly to what has

been done in the Case 2.

QED


