Por favor, use este identificador para citar o enlazar este ítem:
http://repositorio.ufc.br/handle/riufc/73457
Tipo: | Artigo de Periódico |
Título : | A Novel transfer learning based approach for pneumonia detection in chest x-ray images |
Autor : | Chouhan, Vikash Singh, Sanjay Kumar Khamparia, Aditya Gupta, Deepak Tiwari, Prayag Moreira, Catarina Damaševičius, Robertas Albuquerque, Victor Hugo Costa de |
Palabras clave : | Deep learning;Transfer learning;Medical image processing;Computer-aided diagnosis;Aprendizado profundo;Aprendizagem de transferência;Processamento de imagens médicas;Diagnóstico assistido por computador |
Fecha de publicación : | 2020 |
Editorial : | Applied Sciences |
Citación : | Chouhan, Vikash; SINGH, Sanjay Kumar; KHAMPARIA, Aditya; GUPTA, Deepak; TIWARI, Prayag; MOREIRA, Catarina; DAMAŠEVIČIUS, Robertas; ALBUQUERQUE, Victor Hugo Costa de. A Novel transfer learning based approach for pneumonia detection in chest x-ray images. Applied Sciences, [s.l.], v. 10, n. 2, p. 559, 2020. |
Abstract: | Pneumonia is among the top diseases which cause most of the deaths all over the world. Virus, bacteria and fungi can all cause pneumonia. However, it is difficult to judge the pneumonia just by looking at chest X-rays. The aim of this study is to simplify the pneumonia detection process for experts as well as for novices. We suggest a novel deep learning framework for the detection of pneumonia using the concept of transfer learning. In this approach, features from images are extracted using different neural network models pretrained on ImageNet, which then are fed into a classifier for prediction. We prepared five different models and analyzed their performance. Thereafter, we proposed an ensemble model that combines outputs from all pretrained models, which outperformed individual models, reaching the state-of-the-art performance in pneumonia recognition. Our ensemble model reached an accuracy of 96.4% with a recall of 99.62% on unseen data from the Guangzhou Women and Children’s Medical Center dataset. |
URI : | http://www.repositorio.ufc.br/handle/riufc/73457 |
ISSN : | 2076-3417 |
Derechos de acceso: | Acesso Aberto |
Aparece en las colecciones: | DEEL - Artigos publicados em revista científica |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
2020_art_vchouhan.pdf | 4,6 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.