Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/72121
Tipo: Artigo de Periódico
Título: Spatiotemporal air pollution forecasting in houston-TX: a case study for ozone using deep graph neural networks
Autor(es): Santos, Victor Oliveira
Rocha, Paulo Alexandre Costa
Scott, John
Thé, Jesse Van Griensven
Gharabaghi, Bahram
Palavras-chave: Air pollution;Machine learning;Forecasting;Houston;Poluição do ar;Previsão
Data do documento: 2023
Instituição/Editor/Publicador: Atmosphere
Citação: SANTOS, Victor Oliveira; ROCHA, Paulo Alexandre Costa; SCOTT, John; THÉ, Jesse Van Griensven; GHARABAGHI, Bahram. Spatiotemporal air pollution forecasting in houston-TX: a case study for ozone using deep graph neural networks. Atmosphere, [s.l.], v. 14, n. 2, p. 308, 2023.
Abstract: The presence of pollutants in our atmosphere has become one of humanity’s greatest challenges. These pollutants, produced primarily by burning fossil fuels, are detrimental to human health, our climate and agriculture. This work proposes the use of a spatiotemporal graph neural network, designed to forecast ozone concentration based on the GraphSAGE paradigm, to aid in our understanding of the dynamic nature of these pollutants’ production and proliferation in urban areas. This model was trained and tested using data from Houston, Texas, the United States, with varying numbers of time-lags, forecast horizons (1, 3, 6 h ahead), input data and nearby stations. The results show that the proposed GNN-SAGE model successfully recognized spatiotemporal patterns underlying these data, bolstering its forecasting performance when compared with a benchmarking persistence model by 33.7%, 48.7% and 57.1% for 1, 3 and 6 h forecast horizons, respectively. The proposed model produces error levels lower than we could find in the existing literature. The conclusions drawn from variable importance SHAP analysis also revealed that when predicting ozone, solar radiation becomes relevant as the forecast time horizon is raised. According to EPA regulation, the model also determined nonattainment conditions for the reference station.
URI: http://www.repositorio.ufc.br/handle/riufc/72121
ISSN: 2073-4433
Aparece nas coleções:DEME - Artigos publicados em revista científica

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2023_art_pacrocha.pdf6,76 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.