Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/72121
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorSantos, Victor Oliveira-
dc.contributor.authorRocha, Paulo Alexandre Costa-
dc.contributor.authorScott, John-
dc.contributor.authorThé, Jesse Van Griensven-
dc.contributor.authorGharabaghi, Bahram-
dc.date.accessioned2023-05-08T17:01:23Z-
dc.date.available2023-05-08T17:01:23Z-
dc.date.issued2023-
dc.identifier.citationSANTOS, Victor Oliveira; ROCHA, Paulo Alexandre Costa; SCOTT, John; THÉ, Jesse Van Griensven; GHARABAGHI, Bahram. Spatiotemporal air pollution forecasting in houston-TX: a case study for ozone using deep graph neural networks. Atmosphere, [s.l.], v. 14, n. 2, p. 308, 2023.pt_BR
dc.identifier.issn2073-4433-
dc.identifier.otherDOI: https://doi.org/10.3390/ atmos14020308-
dc.identifier.urihttp://www.repositorio.ufc.br/handle/riufc/72121-
dc.description.abstractThe presence of pollutants in our atmosphere has become one of humanity’s greatest challenges. These pollutants, produced primarily by burning fossil fuels, are detrimental to human health, our climate and agriculture. This work proposes the use of a spatiotemporal graph neural network, designed to forecast ozone concentration based on the GraphSAGE paradigm, to aid in our understanding of the dynamic nature of these pollutants’ production and proliferation in urban areas. This model was trained and tested using data from Houston, Texas, the United States, with varying numbers of time-lags, forecast horizons (1, 3, 6 h ahead), input data and nearby stations. The results show that the proposed GNN-SAGE model successfully recognized spatiotemporal patterns underlying these data, bolstering its forecasting performance when compared with a benchmarking persistence model by 33.7%, 48.7% and 57.1% for 1, 3 and 6 h forecast horizons, respectively. The proposed model produces error levels lower than we could find in the existing literature. The conclusions drawn from variable importance SHAP analysis also revealed that when predicting ozone, solar radiation becomes relevant as the forecast time horizon is raised. According to EPA regulation, the model also determined nonattainment conditions for the reference station.pt_BR
dc.language.isoenpt_BR
dc.publisherAtmospherept_BR
dc.subjectAir pollutionpt_BR
dc.subjectMachine learningpt_BR
dc.subjectForecastingpt_BR
dc.subjectHoustonpt_BR
dc.subjectPoluição do arpt_BR
dc.subjectPrevisãopt_BR
dc.titleSpatiotemporal air pollution forecasting in houston-TX: a case study for ozone using deep graph neural networkspt_BR
dc.typeArtigo de Periódicopt_BR
Aparece nas coleções:DEME - Artigos publicados em revista científica

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2023_art_pacrocha.pdf6,76 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.