Use este identificador para citar ou linkar para este item:
http://repositorio.ufc.br/handle/riufc/72115
Registro completo de metadados
Campo DC | Valor | Idioma |
---|---|---|
dc.contributor.author | Rocha, Paulo Alexandre Costa | - |
dc.contributor.author | Modolo, Angelo Bezerra | - |
dc.contributor.author | Pontes Lima, Ricardo José | - |
dc.contributor.author | Silva, Maria Eugênia Vieira da | - |
dc.contributor.author | Bezerra, Carlos André Dias | - |
dc.contributor.author | Fernandes, Jefferson Lemos | - |
dc.date.accessioned | 2023-05-08T16:14:44Z | - |
dc.date.available | 2023-05-08T16:14:44Z | - |
dc.date.issued | 2019 | - |
dc.identifier.citation | ROCHA, Paulo Alexandre Costa; MODOLO, Ângelo Bezerra; PONTES LIMA, Ricardo José; SILVA, Maria Eugenia Vieira da; BEZERRA, Carlos André Dias; FERNANDES, Jefferson Lemos. Estimation of daily, weekly and monthly global solar radiation using ANNs and a long data set: a case study of Fortaleza, in brazilian northeast region. International Journal of Energy and Environmental Engineering, [s.l.], v. 10, p. 319-334, 2019. | pt_BR |
dc.identifier.issn | 2251-6832 | - |
dc.identifier.other | doi: https://doi.org/10.1007/s40095-019-0313-0 | - |
dc.identifier.uri | http://www.repositorio.ufc.br/handle/riufc/72115 | - |
dc.description.abstract | A 14-year-long data set containing daily values of meteorological variables was used to train three artificial neural networks (ANNs) for daily, weekly averaged and monthly averaged global solar radiation prediction for Fortaleza, in the Brazilian Northeast region. Local climate is semiarid coastal. Day of the year, maximum temperature, minimum temperature, irradiance, precipitation, cloudiness, extraterrestrial radiation, relative humidity, evaporation and wind speed were adopted as predictors. The ANNs were developed by an in-house code and trained with the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm. Besides the lack of explicit predictors able to model El Niño and La Niña phenomena, which have strong influence on local weather, the accuracy of the predictions was considered excellent according to its values of normalized root-mean-square error (nRMSE) and good relative to mean absolute percentage error (MAPE) values. Both error metrics presented the smallest values for the monthly case study | pt_BR |
dc.language.iso | en | pt_BR |
dc.publisher | International Journal of Energy and Environmental Engineering | pt_BR |
dc.subject | Solar energy prediction | pt_BR |
dc.subject | Artificial neural networks | pt_BR |
dc.subject | Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm | pt_BR |
dc.subject | Semiarid coastal region | pt_BR |
dc.subject | Previsão de energia solar | pt_BR |
dc.subject | Redes neurais artificiais | pt_BR |
dc.subject | Litoral Semiárido | pt_BR |
dc.title | Estimation of daily, weekly and monthly global solar radiation using ANNs and a long data set: a case study of Fortaleza, in brazilian northeast region | pt_BR |
dc.type | Artigo de Periódico | pt_BR |
Aparece nas coleções: | DEME - Artigos publicados em revista científica |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
2019_art_mevsilva.pdf | 1,78 MB | Adobe PDF | Visualizar/Abrir |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.