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Abstract
A 14-year-long data set containing daily values of meteorological variables was used to train three artificial neural networks 
(ANNs) for daily, weekly averaged and monthly averaged global solar radiation prediction for Fortaleza, in the Brazilian 
Northeast region. Local climate is semiarid coastal. Day of the year, maximum temperature, minimum temperature, irra-
diance, precipitation, cloudiness, extraterrestrial radiation, relative humidity, evaporation and wind speed were adopted 
as predictors. The ANNs were developed by an in-house code and trained with the Broyden–Fletcher–Goldfarb–Shanno 
(BFGS) algorithm. Besides the lack of explicit predictors able to model El Niño and La Niña phenomena, which have strong 
influence on local weather, the accuracy of the predictions was considered excellent according to its values of normalized 
root-mean-square error (nRMSE) and good relative to mean absolute percentage error (MAPE) values. Both error metrics 
presented the smallest values for the monthly case study.

Keywords  Solar energy prediction · Artificial neural networks · Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm · 
Semiarid coastal region

Introduction

In present day, solar energy is widely applied at many sites 
around the world to improve sustainability and reduce major 
environmental problems, such as global warming and air 
pollution [1].

Brazil has great potential to exploit solar energy, with 
700,000 residential consumers predicted to have roof-
mounted solar panels up to 2024, according to the Brazilian 
Electricity Regulatory Agency [2]. Due to environmental 
and economic reasons, tropical countries such as Brazil 
will need to use their solar energy potential, estimated from 
1500 kW to 2200 kW h m−2/year, to diversify their energy 
matrix. Presently, Brazil has an installed capacity of 134 
GW, whose 5% are solar or wind based [3]. Its geographi-
cal location affords very large annual solar irradiation, and 

the interest in the development of solar power plants has 
been arising. For example, from 2014 to 2015, the photo-
voltaic sector increased 266% [4]. From 2012 to 2016, over 
23 MWp of small-scale grid-connected photovoltaic systems 
have been installed in the distribution generation modality, 
while 2091.7 MWp of centralized generation have been 
approved during 2014 and 2015 [5]. It is important to note 
that forecasting models play an important role in the national 
energy development plan [6], particularly concerning the 
matrix of several renewable and highly seasonal energy 
sources as Brazil’s.

Among Brazilian regions, the northeast shows high via-
bility to solar energy exploiting [7] due to its proximity to 
Equator and climatology, with a big area inserted in the sem-
iarid zone. The region attains average daily horizontal global 
solar radiation of 5.49 kWh/m2 and the normal component 
of beam radiation of 5.05 kWh/m2. Furthermore, Brazilian 
Northeast region has higher monthly global solar radiation 
averages than Portugal and Spain, in addition to less monthly 
variability. The state of Ceará, located at northernmost part 
of Northeast Region, is one of the Brazilian states with the 
highest solar potential. The state is home of the biggest 
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non-governmental solar power plant in the country, with 
capacity of 3 MW and expandable to 5 MW [7].

Solar energy use becomes especially important given 
the near future context of high fossil fuel prices and envi-
ronmental destruction [8]. In this sense, the literature [1] 
indicates the availability of solar irradiation data as a fun-
damental factor for solar system experts to successfully 
simulate, operate and assess solar energy technology and its 
applications. Even as for energy generation, the knowledge 
about incident solar radiation in a particular site plays an 
essential role for agricultural, hydrological and ecological 
applications. The best way to obtain global solar irradiation 
data is through remote measurements at a given local using 
specific devices. However, due to the high cost of calibration 
and maintenance of these devices, the acquisition of solar 
irradiation data restrains to several meteorological stations 
around the world [9].

Difficulties and uncertainties in measuring global solar 
irradiation have led to the development of several models 
and algorithms to estimate it from a few meteorological 
properties computed on a frequent basis: maximum, mini-
mum and mean atmospheric temperature; relative humidity, 
cloudiness, etc. Through the last years, a high number of 
models have been designed to assess the global solar irra-
diation over a horizontal surface. Among them, it highlights 
the empirical models [10, 11], satellite data based [12, 13], 
stochastic [14, 15], heuristics [6, 16, 17] and statistical [12, 
18, 19] models.

Recently, artificial intelligence and computational intel-
ligence techniques, especially artificial neural networks 
(ANNs), have been thoroughly used to solve real-world 
problems. These applications concern situations for which 
traditional methodologies do not seem suitable or further 
precision is required, such as meteorological variables 
forecasting as wind speed [20–22], precipitation [23] and 
land surface temperature [24]. The implementation of such 
approaches in estimating solar radiation has received specific 
attention in the last years [1, 25–36].

The present work, therefore, consists in establishing a 
global solar radiation estimation model that aims to estimate 
radiation from more easily measured meteorological vari-
ables obtained at the same instant as the desired forecast. 
Specifically, this work presents three ANNs adopting mete-
orological variables measured at Fortaleza as predictors. The 
local climate at Fortaleza, a coastal city inserted in the semi-
arid zone of Brazil, is highly influenced by the occurrence of 
El Niño and La Niña, which affect the meteorological condi-
tions of many regions of the world. Therefore, the study of 
meteorological data collected at this particular site contrib-
utes to the new body of knowledge from the international 
perspective as it allows further comprehension of globally 
relevant phenomena. Furthermore, few studies in the litera-
ture review approaches such a long data set. Its influence on 

the performance of ANNs meteorological prediction models 
may represent a valuable subject to researchers working in 
this field. At last, this work introduces another contribu-
tion: the application of Broyden–Fletcher–Goldfarb–Shanno 
(BFGS) algorithm as an alternative to traditional back propa-
gation method.

Related works and research gaps

Once this work discusses artificial neural networks, it is rel-
evant to briefly introduce the subject before the literature 
review. Consequently, all the aspects of artificial neural net-
works presented along this section should not be unknown 
by the time they will be discussed.

Neural networks, or artificial neural networks (ANNs), 
represent a technology with origins in many disciplines: neu-
roscience, math, statistics, physics, computer science and 
engineering. Neural networks have applications in fairly 
diverse fields as classification [37–39], clustering [40–42], 
prediction [43–45] and pattern recognition [46–49]. The 
main reason concerns its property to learn from input data 
with or without supervision [50, 51] through the use of an 
appropriate training method.

Climate and region

Climatological and regional characteristics such as topog-
raphy, vegetation, proximity to the shore and water masses 
influence the solar radiation over a specific site.

The literature review denotes the study of these influences 
around the world as the following works shown. A com-
bined model coupling linear autoregressive moving average 
and a recurrent dynamic ANNs was developed to estimate 
daily global solar radiation for two different climate sites in 
Algeria [30].

The research conducted in Australia [23] uses a multi-
location study combining ANNs and satellite data to esti-
mate monthly global solar radiation. Thirteen meteorologi-
cal stations located across southern Quebec, Canada, apply 
three ANNs [14] compared with different input combina-
tions of temperature and relative humidity to three geosta-
tistical interpolation models in respect to their capacity to 
fill missing values of daily global solar radiation in data sets. 
Similarly, a comparison of three different ANNs methods to 
predict daily solar radiation for twelve locations of different 
climatic zones was performed in China [35].

Several prediction models were developed for sites in 
Iran [26, 32, 34]. Two different types of ANNs were used to 
predict daily global solar radiation at Dezful city [26]. The 
Iranian researchers [32] coupled ANNs and a metaheuristic 
method to predict daily solar radiation at Mashhad. Data sets 
from four stations in the United States of America and two 
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stations in Iran were used to compare ANNs, gene expres-
sion programming, wavelet regression and five temperature-
based empirical models capacity of daily global solar radia-
tion prediction [34].

Two different ANNs, two adaptive neuro-fuzzy inference 
systems and two support vector machines daily global solar 
radiation prediction models for six locations in Mexico were 
compared [52], indicating how ANNs can compete in per-
formance against several well-known approaches.

A multi-location ANNs to predict monthly average daily 
global solar radiation over Italy was developed [25]. Instead 
of using different periods to train and test the model, differ-
ent subsets of stations were used. A subset of 17 locations 
was used for the ANNs training, while the testing step was 
against data from the remaining 28 locations.

Six ANNs-based models to estimate horizontal global 
radiation for Madinah, Saudi Arabia, were developed and 
compared to conventional regression models. They used 
different sets of variables to each ANNs’ model and their 
results show higher precision than empirical models based 
exclusively on insolation and air temperature. Thereof, it 
may be observed that it is reasonable to use artificial neural 
networks as an attractive alternative to several different types 
of existing models.

In another work [52], an investigation was conducted to 
estimate global solar radiation using neural networks for a 
mountainous region in southeastern Spain. The presented 
results show that artificial neural networks may be considered 
as an easy and effective technique to estimate solar radiation 
in sloped terrain. Also, hybrid ANNs–metaheuristic method 
to predict daily global solar radiation in Spain for Murcia City 
from novel meteorological variables was proposed [33].

The models proposed by [28, 36] were developed to 
predict global solar radiation in Turkey. In [28], data were 
taken from Eastern Mediterranean Region of the country to 
develop three monthly global solar radiation ANNs predic-
tion models for the cities of Mersin, Adana, Kahramanmaras 
and Antakya. Another work aimed the same region [36], and 
data from Mersin, Adana, Kahramanmaras and Hatay were 
used. They compared an ANNs model to ten different daily 
global solar radiation empirical prediction methods.

The authors in [31] developed two ANNs models to esti-
mate monthly global horizontal irradiance for Abu Dhabi, 
Dubai and Al-Ain. In a similar direction, the ANNs approach 
was applied for predicting global horizontal irradiation for 
twelve cities in Zimbabwe [29].

The literature review covers most continents of the world, 
including Africa, Asia, North America and Oceania. This 
present research work is a case study of a site at the North-
eastern region of Brazil, located at Fortaleza city, in state 
of Ceará. This region stands out as having high DNI levels 
during almost the whole year. In this sense, this work tries 

to fulfill a gap of South American studies and mainly coastal 
semiarid climates case studies.

Input parameters

A standard set of input parameters for predicting global 
radiation is not pre-established. The choice of parameters 
varies according to the author approaches and the regions 
studied. Indeed, a relevant parameter to a case study may not 
play an important role in different circumstances. The choice 
of a parameter may also be constrained by the availability 
of measured data.

Typical input parameters are climatological, temporal or 
geographical. Climatological parameters include tempera-
tures (maxima, minima, averages and amplitudes), wind 
speed, pressure, relative humidity, sunshine duration, extra-
terrestrial radiation and clearness index. Temporal param-
eters typically are day of the year and month of the year; 
while the geographical parameters include latitude, longi-
tude and altitude.

However, some authors innovate in the choice of param-
eters as it may produce a better characterization of the site. 
For example, cumulated rainfall was included in [25]; also, 
the frequency of rainy days and heating degrees days arise 
among the chosen parameters. The work in [53] aimed to 
estimate solar radiation over a mountainous area. Therefore, 
the authors included the slope of the measurement sites 
among the relevant parameters.

Some cases [32] not only compute air temperatures as 
inputs, but also use the earth skin temperature. The complete 
parameter set contains the average air temperature, minimum 
air temperature, maximum air temperature, relative humid-
ity, pressure, and wind speed. Similarly, the land surface 
temperature was added in [23] as input parameter. The data 
were obtained from satellite for the geographic coordinates 
altitude, latitude, longitude and month. Evaporation is also 
included in the set of parameters [26]. The other predictive 
variables are day of the year, daily mean air temperatures, 
relative humidity, sunshine hours and wind speed.

Some authors [33] approach the problem by a truly inno-
vative way. According to this review, their choice of predic-
tive variables had not yet been considered in other studies 
about radiation prediction. Besides the extraterrestrial solar 
radiation, the study also includes aerosol depth product, total 
ozone amount, total precipitable water and cloud amount.

In agreement with the literature review, this study 
applies the following parameters as predictive variables: 
day of the year, maximum temperature, minimum tem-
perature, sunshine duration, precipitation, cloudiness, 
extraterrestrial radiation, relative humidity, evaporation 
and wind speed. A meteorological station, located at coor-
dinates 3.745278 S, 38.582153 W, measured and recorded 
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all these input parameters. Figure 1 depicts the location of 
the meteorological station.

Data set size

The data set size plays a direct role in the quality of predic-
tion produced by an ANNs, as it determines the weights 
and biases that minimize the cost function for a wider 
input range. A long data set size allows the network to 
improve the prediction of long-term phenomena that may 
not be evident in short spans. However, the data availabil-
ity mostly influences the data set size. Also, calibration 
and degradation issues of the instruments may invalidate 
some values reducing the data set length.

Commonly, the literature [14, 23, 26, 27, 29, 30] refers 
to data sets shorter than 10 years. Some authors [28, 32, 
36] present data sets longer than 10 years, but more rarely 
[34, 35] works use data sets longer than 30 years. Some 
multi-location studies [31, 52] apply sets of different sizes, 
depending on the station. The research work presented in 
[35] draws special attention once it has the longest data 
set of all the considered studies, ranging across 54 years.

This work used a 44-year-long data set as a start point, 
what may be considered a somewhat big database, in front 
of the previous works. However, as shown further ahead 
in Sect. 6, the effective period used was constrained to the 
longest consecutive interval with high data availability, 
which leads to an amount of 14 years. Although this is 
significantly shorter than the original data set, it is still 
among the longest when compared to literature review. 
Thus, this work has a data set shorter than those presented 
in references [32, 34, 35] and [52].

Training method

Training of an ANNs consists in minimizing a cost function, 
evaluated by the deviation between the expected results and 
the predicted outputs. By feeding the ANNs with a particu-
lar set of inputs, called training sets, the method varies the 
weights and bias of the ANNs to decrease the cost function.

Common approaches use the back propagation method 
[14, 25–27, 34], and the Levenberg–Marquardt algorithm 
[29, 30, 52]. Some authors may use heuristic methods to 
minimize the cost function and hence train the ANNs, as in 
[32, 33]. In the literature review, some works applied differ-
ent methods or even compared its effects on the accuracy of 
the ANNs [23, 28, 31, 36].

This work used the Broyden–Fletcher–Goldfarb–Shanno 
(BFGS) algorithm, a quasi-Newton optimization method. 
This method is present in [23, 31] for the training of an 
ANNs solar radiation prediction method.

Other uses of BFGS to train ANNs for estimating meteor-
ological parameters are present for evapotranspiration index 
[23], wind speed [20] and land surface temperature [24].

In the prediction of meteorological parameters through 
methods not involving ANNs, BFGS algorithm can be found 
in the works which predicted solar radiation [54, 55] and 
wind speed [20].

Scope of present work

This works aims to fulfill some of the research gaps iden-
tified in the literature review presented above. The main 
characteristics of the referenced studies in ANNs are sum-
marized in Table 1.

Regarding the literature review, it reveals a clear lack of 
solar radiation ANNs prediction models in South America. 
Furthermore, the studied region shows interesting features 
such as a semiarid coastal weather and the high influence 
of El Niño and La Niña phenomena on the meteorological 
conditions.

Although the data set does not contain atypical or exclu-
sive input parameters in comparison with the literature 
review, it spans 44 years and it is longer than all but one 
data set presented in the review ranged from 2 years to 
33 years. The exception being credited to [35], who used a 
54-year-long data set. Besides, the present work studies and 
compares the prediction of global solar radiation in three dif-
ferent temporal bases: daily, weekly and monthly averaged. 
The authors did not find similar approach in the literature.

Finally, according to the authors’ review, most works used 
the Levenberg–Marquardt algorithm and back propagation 
as the main training methods for ANNs solar radiation pre-
diction models. Only two references employed BFGS algo-
rithm and it proved appropriate for training an ANNs.Fig. 1   Meteorological station location
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Artificial neural networks (ANNs)

The expression “neural networks” remains from early 
attempts to find a mathematical representation of how 
biological systems process information [51]. Therefore, 
the ANNs perform basing on the way neurons work inside 
the human brain.

The main components of a neuron consist of the input 
signals, the synaptic weights, the applied bias, the additive 
junction and its activation function. Input signals represent 
received stimuli from neuron that will be transformed into 
an output signal by different processes occurring through-
out its course in the neuron. The synaptic weights repre-
sent a connection link between input signal and the neu-
ron. Each input signal is connected to the neuron through 
a different link. The bias role is to enhance or reduce the 
total information processed by the neuron to generate an 
answer to the initial stimulus.

The addictive junction, usually a linear combiner, 
receives information from different input signals weighted 
by its synaptic weights and biases, generating liquid infor-
mation to be processed by the neuron. Finally, the activa-
tion function of a neuron is responsible for transforming 
the liquid information received from the neuron into out-
put information, i.e., it produces an answer to the stimuli 
received by the neuron.

Different architectures of ANNs are possible according 
to how its neurons are connected to each other. A Mul-
tilayer Perceptron (MLP) is a class of ANNs where the 
neurons are organized in an input layer, an output layer 
and one or more intermediate layers called hidden layers.

In the present study, a MLP was created using R pro-
gramming language to predict the value of global solar 
radiation in three different time basis.

The Broyden–Fletcher–Goldfarb–Shanno 
algorithm

With respect to unconstrained optimization [56], quasi-
Newton methods are widely applied algorithms employed 
to the task of finding local minima of functions, as the cost 
functions of ANNs may be. The quasi-Newton is based on 
Newton’s method to find a static point of a function, where 
its gradient is zero.

The main goal of the Broyden–Fletcher–Gold-
farb–Shanno (BFGS) algorithm is to find a descent direction 
and a descent step which will lead to a faster learning. Con-
sequently, this algorithm uses information from the second-
order derivative of the cost function. This information is 
represented by the approximation of the Hessian matrix, B.

The algorithm can be summarized as a sequence of 
steps [57], which are described by Eqs. (1)–(5).

Step 0 Given x1 ∈ ℛn, B1 ∈ ℛn×n defined positive, calculate 
g1 = ∇f(x1). If g1 = 0, stop; else, make k = 1.

Step 1 Choose dk = − Bk
−1gk.

Step 2 Do a linear search along direction dk to obtain a 
value of γk > 0, xk+1 = xk + γk × dk and gk+1 = ∇f(xk+1);

If gk + 1 = 0, stop.
Step 3 Choose

where

Step 4 k≔ k + 1; Go to step 1
Still according to [57], in BFGS algorithm, a learning rate 

of αk is necessary to obey to Wolfe conditions defined by the 
following equations:

In this algorithm, f is the function to be minimized, i.e., the 
cost function during the training of the ANNs. The xk param-
eter represents the weights and bias during iteration k.

The quality of the models developed from neural network 
algorithms may be evaluated by error parameters, as the root-
mean-square error (RMSE) and the mean absolute percentage 
error (MAPE); as well as by the coefficient of determination 
R2.

Several error metrics can be calculated. Throughout this 
work, the errors presented in Eqs. (6)–(9) are used to assess 
and compare the models.

(1)Bk+1 = Bk −
Bksks
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where N is the quantity of data points in the sample, ŷi is 
the value predicted by the neural network and yi is the real 
observed value.

ANNs setup, training and error assessment

To perform the case study of this work, a training algorithm 
has been developed. The applied pseudocode is as follows:

	 1.	 Choose the number of neurons in the hidden layer of 
the neural network;

	 2.	 Choose the activation function of the neurons;
	 3.	 Initiate the synaptic weights randomly;
	 4.	 Initiate the hessian matrix approximation as the iden-

tity matrix;
	 5.	 Run the propagation algorithm;
	 6.	 Calculate the cost function;
	 7.	 Calculate the cost function gradient through the retro-

propagation algorithm;
	 8.	 Calculate the descent direction through the BFGS algo-

rithm;
	 9.	 Do a linear research along this direction to find the 

optimal step;
	10.	 Recalculate vectors s and y using Eqs. (7) and (8);
	11.	 Recalculate the hessian approximation using Eq. (6);
	12.	 Go back to step 5 and loop until convergence is 

achieved;

The R language [58] was applied in the development of 
these algorithms. It is an Open Source and free develop-
ment tool.

Experimental data pre‑processing

One of the objectives of the present work was to perform a 
case study using ANNs algorithms to obtain a regression 
model to predict solar radiation from easily obtainable mete-
orological variables.

Accordingly, experimental data containing maximum and 
minimum temperatures, wind speed, cloudiness, precipita-
tion and solar radiation were obtained from a meteorological 
station located at the Federal University of Ceará. For this 
long-term measurement campaign, the instruments (glass 
thermometers, Campbell–Stokes pattern sunshine recorder, 
standard rain gauge, wet bulb thermometer, class A evapo-
ration pan and cup anemometer) have enough robustness, 
accuracy and reliability, even if the data logging was not 
automated. In particular, the actinograph is a Bimetallic 
Actinograph, Robitzsch–Fuess Type 58 dc, which presents 
errors smaller than 5%, according to the manufacturer. The 
data series cover an interval ranging from 1969 to 2012.

In addition to the variables mentioned in Sect. 2.2, extra-
terrestrial radiation data have been evaluated and used. 
These data were calculated for the city of Fortaleza follow-
ing Eq. (10), which can be found in [59].

where B is given by B = (n − 1) × (360/365). The number 
“n” represents the number of the day.

From the daily raw data, three separate series were gen-
erated for comparison: daily, weekly and monthly averaged 
data from the meteorological variables. Then, the series 
were analyzed about their descriptive statistics. Further-
more, the total number of available data and the ratio of 
blank data were calculated to select the best data subset for 
the case study.

Finally, the selected data were normalized according to 
Eq. (11), as suggested [25]:

where XN is the normalized variable, XR is its real value, 
XMax and XMin are, respectively, the maximum and minimum 
values of the variable in the data sample. The convergence 
of the algorithm becomes faster if the mean of each variable 
of the training set is close to zero [60].

Case study

Three approaches were conducted with normalized data 
using, respectively, daily, weekly and monthly averaged 
series. The radiation prediction models have been developed 
by a training algorithm created for the purpose of this work.

The studied models consisted of an ANNs structure 
with a hidden layer, the inputs of which are the variables 
presented in Sect. 2.2 and the calculated extraterrestrial 
radiation (Gon) for the correspondent time steps. The values 
of the time steps were chosen accordingly to the averag-
ing frequency: for daily data, day of the year was used; for 
weekly data, week of the year was used; and for monthly 
data, month of the year was used.

Thus, the studied ANNs had the structure shown in Fig. 2.
To check the different obtained models, data have been 

split into two groups: training data and test data. The training 
data set size for each case study corresponds to 70% of the 
total data set. The remaining 30% was used as a test data set. 
Training data were used to develop a neural network model 
and test data were used to assess its predictive capacity.

The evaluation of model quality was made by the applica-
tion of Eqs. (6)–(9). To find the number of neurons in the 
hidden layers which generates the least prediction error for 
each case study, a chart was created linking the prediction 

(10)

Gon = Gsc[1.000110 + 0.034221 × cosB + 0.001280

× sinB + 0.000719 × cos 2B + 0.000077 × sin 2B],

(11)XN = 0.1 + 0.8 ×
XR − XMin

XMax − XMin

,
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error and testing error to the data size transmitted to the 
network. The goal of this analysis was to find out how much 
data are needed to perform solar radiation studies.

Finally, the resulting number of neurons obtained from 
previous analysis was used to train the ANNs again, and the 
results were evaluated using Eqs. (6)–(9) and summarized 
in charts and tables.

Results and discussion

The daily extraterrestrial solar radiation has been cal-
culated to include it among the descriptive variables 
of the global solar radiation prediction model obtained 
experimentally.

Table 2 presents the availability of data per year. The 
interval ranging from 1974 to 1988 composes the most 
complete continuous subset, and therefore it was chosen 
for analysis.

The descriptive statistics of the data set at daily, weekly 
and monthly basis can be found respectively on Tables 3, 
4 and 5.

From the tables presented, it can be noted that no signif-
icant changes occur at the mean values when the time basis 
is changed. Furthermore, it can be noted that increasing 
the interval size leads to decreasing standard deviations, 
i.e., the coefficient of variation decreases. This may lead to 
the conjecture that simpler prediction models, with fewer 
neurons, could be able to predict global solar radiation 
from data sets with longer sampling interval sizes. It could 
also be conjectured that training neural networks from data 
sets with smaller variability would demand a smaller train-
ing set to obtain an acceptable accuracy.

The results of several training sessions were evaluated 
graphically before defining the optimal number of neurons 
to compare the performance of the developed algorithm to 
the ones found in literature.

Training a neural network aims to minimize the cost 
function, i.e., to reduce the training error through feeding it 
repeatedly with training samples and the expected results for 
those samples. This essentially consists in an optimization 
problem where the error plays the role of the cost function. 
As expected, a high number of training sessions results in 
increasingly smaller errors, i.e., the network becomes more 
able to predict the results associated with the training sam-
ples. However, this produces overfitting as a result of the 
bias variance trade-off. As the bias of the ANNs decreases 
and it comes closer to the expected results for training data, 
an increase occurs in its variance, i.e., its sensibility to new 
(test) data. Figure 3 shows this behavior in training sessions 
done with the monthly data set.

The curves of theoretical error versus the number of 
iterations often decline smoothly. However, real graph [61] 
depicts very jagged lines as seen in Fig. 3. Hence, the algo-
rithm developed in this work behaves as expected, which 
confers its ability to train neural networks from daily, weekly 
and monthly data samples.

The next step of the analysis consisted in determining the 
complexity of the neural network, i.e., the minimum number 
of neurons in the hidden layer that would lead to the least 
prediction error.

Determining the number of neurons inside the hidden 
layer classically is made by trial and error [62]. For this, 
it trains various structures to assess their performances. 
Finally, the best configuration is chosen. The problem with 
this kind of approach is its high manual cost, even though 

Fig. 2   Modeled ANNs structure
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computational algorithms may be written to build, train and 
test neural networks.

Figures 4, 5 and 6 show the results for the different case 
studies. Once all the variables have been normalized accord-
ing to Eq. (10), RMSE is dimensionless.

As seen in these graphs, fewer iterations in models 
result in less flexibility, and therefore produces high errors 
in modeling for both training and test data sets. As the 
number of neurons increases, the model becomes more 
flexible and its ability to predict both data sets improves. 
However, a further increase in the number of neurons can 
produce an excessively flexible model. This provides small 
errors in the training data site, but results in an increase 
error in test data set prediction, as it projects patterns that 
do not exist in the test data set. Therefore, an overly flex-
ible model is not reliable in predicting unknown points, 
and a compromise in the number of neurons, visible in the 
global minimum of the red curve, must be achieved.

Figure 6 shows that the minimum prediction error occurs to 
30 neurons in the hidden layer. With more than this number of 
neurons, the network is able to accurately describe the training 
data, but loses capacity of predicting new data. With fewer than 
30 neurons, the network cannot predict accurately the training 
data, since it will not be able to properly generalize the rela-
tionships between the variables and predict the monthly solar 
radiation. Analogously, it can be asserted that the best predic-
tive capacity for the daily and weekly data sets results from 40 
and 50 neurons in the hidden layer, respectively.

To deepen the present analysis, the effect of data set 
size used in the training was assessed. The results are sum-
marized in Figs. 7, 8 and 9.

The analysis of these graphs shows clearly the impor-
tance of applying a significantly large dataset during the 
neural networks training. It is possible to confirm that 
increasing the amount of data roughly implies in smaller 
prediction errors. In other words, the neural networks learn 
more and better with more data. The dataset used in this 
work is very long and this allowed us to assess the effect 
of the chosen dataset on the RMSE. This conclusion would 
not be achieved from the analysis of a short dataset.

At last, based on the number of neurons obtained pre-
viously, an ANNs has been created for each case study 
and the results can be observed in Figs. 10 and 11 and in 
Table 6.

In the literature review, no weekly analysis has been 
found. The following paragraphs compare the results of 
the present study to different error metrics for daily and 
monthly analysis found in the literature.

The MAPE of the daily case study was 14.87%, which 
is somewhat higher than the value of 6.53% found in [26]. 
Various choices of algorithms were tried [29] in multiple 
locations resulting in errors ranged from 2.56 to 10.57%.

A comparatively high value of MAPE was found in the 
monthly case study as well. In a previous work [25], the 
variation of the number of model parameters results in a 
MAPE range from 1.67 to 4.25%. In another study [28], it 

Table 2   Percentage of experimental data present in each year

Year Tmax (%) Tmin (%) RH1 (%) RH2 (%) RH3 (%) PREC (%) EVAP (%) IRR (%) C1 (%) C2 (%) C3 (%) H (%)

1969 100 100 100 100 100 100 100 100 100 100 100 100
1970 100 100 100 100 100 100 100 100 100 100 100 100
1971 100 100 100 100 100 100 100 99 100 100 100 100
1972 100 100 100 100 100 100 100 52 100 100 100 92
1973 100 100 100 100 100 100 100 16 100 100 100 100
1974 100 100 100 100 100 100 100 90 100 100 100 100
1975 100 100 100 100 100 100 100 92 100 100 100 100
1976 100 100 100 100 100 100 100 99 100 100 100 100
1977 100 100 100 99 100 100 100 96 100 100 100 100
1978 100 100 100 100 100 100 100 99 100 100 99 100
1979 100 100 100 100 100 100 100 100 100 100 100 100
1980 100 100 100 100 100 100 100 100 100 100 100 73
1981 100 100 100 100 100 100 100 100 100 100 100 100
1982 100 100 100 100 100 100 100 100 100 100 100 100
1983 100 100 100 100 100 100 100 100 100 100 100 98
1984 100 100 100 100 100 100 100 100 100 100 100 100
1985 100 100 100 100 100 100 100 100 100 100 100 100
1986 100 100 100 100 100 100 100 99 100 100 100 100
1987 100 100 100 100 100 100 100 100 100 100 100 100
1988 100 100 100 100 100 100 100 100 100 100 100 100
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was found MAPE ranging from 2.8027 to 4.1627% to the 
same model across different locations. Therefore, the value 
of 20.83% found in this work is significantly higher and 
probably caused by regional phenomena, such as El Niño 
and La Niña, which could not be assessed by the set of pre-
dictors used in this study.

MAPE values smaller than 10% indicate excellent predic-
tive capacity; MAPE values between 10 and 20% correspond 
to good model predictive capacity; MAPE values between 
20 and 50% represent average model predictive capacity and 
MAPE values above 50% denote inaccurate models [63]. 
Based on this criterion and from the findings, it can be con-
cluded that the predictive models generated with the aid of 
neural networks are able to deliver good results, except for 
the monthly model, which showed average capacity, but for 
a tiny amount (20.83%).Ta
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Fig. 4   Error vs. complexity of network for the daily case study
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A similar comparison was made to assess the quality with 
different metrics, namely the RMSE. For the daily case study 
[27], six ANNs architectures were tested with various num-
bers of neurons and inputs and found RMSE values from 
0.044121 to 0.167655. The model presented in [36] lead to 
a value of 0.14. Herein, the daily case study produced an 
RMSE of 8.76, what may be considered good. However, 
when monthly data are contrasted, the value of 0.0858 found 
in this work is smaller than the RMSE of a previous paper 
[23], which is 1.23. The RMSE has the same units of the 
predicted variable and a more interesting approach is to 
compare nRMSE instead of RMSE, as the former is relative, 
and thus can assess much better the impact of the error over 
the measurement. In such case, the results are very similar. 
The overall nRMSE for the multiple locations of the above-
mentioned study was 5.07%, while our findings show 6.42%.

To increase the scope of the conclusions presented here, 
and keeping in mind that there are several meteorological and 
geographical parameters which may affect the solar radiation 
prediction models, previous work on the same subject [64] 
can be used as a basis for comparison regarding some of the 
conclusions obtained. The authors used monthly average solar 
radiation data (measured) for various meteorological locations 
in Bangladesh and performed a parameter (predictor) selec-
tion to evaluate the ones that mostly impact on the model 
performance. Three attribute evaluators of Waikato Environ-
ment for Knowledge Analysis (WEKA), such as the Classifier 
Subset Eval, the CFS Subset Eval and the Wrapper Subset 
Eval were evaluated in the task of selecting the most influen-
tial input parameters for the training, validation and testing 
of an ANNs model. Twelve input parameters were used to 
develop the prediction model, which was the Month, Local 
Latitude, Longitude and Altitude, Maximal, Minimal and 
Average Temperature, Bright Sunshine, Wind Speed, Rela-
tive Humidity, Rainfall and Cloud Coverage. The approach 

Fig. 5   Error vs. complexity of network for the weekly case study

Fig. 6   Error vs. complexity of network for the monthly case study

Fig. 7   Training error vs data set 
size used in the daily case study
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used herein, on the other hand, was to insert all the parameters 
into the model, so that the generated ANNs could assign the 
necessary weights to the naturally more important parameters, 
which apparently succeeded, since the values of R achived by 
these authors [64], for the test data set, was about 0.75596, 
while those obtained by our model were, also for the case of 
the monthly average, 0.8864 (R2 = 0.7857). This indicates that 
the ANNs, as configured in this work, was able to naturally 
overweight the most important parameters.

Different nRMSE intervals can be defined to represent the 
model quality as [65]: excellent (nRMSE smaller than 10%), 
good (nRMSE between 10 and 20%), average (nRMSE 
between 20 and 30%) and inaccurate (nRMSE higher than 
30%). Thus, the models developed during this work can be 
rated as excellent with respect to their predictive capacities 
according to this benchmarking method.

The new model is more consistent for weeks and monthly 
sampling intervals. One of the possible explanations is the 
increase in the variability of the experimental data set when 
a model is shifted from monthly to weekly and, finally, to 
daily. This augmentation, which is seen as an increase in the 
coefficient of variation (CV), can disrupt the ability of the 
model to accurately describe more scattered datasets leading 
to smaller coefficients of determination.

Conclusion

The present work developed a neural network training 
algorithm applying to the prediction of global solar radia-
tion from meteorological data. The training algorithm was 
developed and optimized through the BFGS algorithm with 
the use of the R language. As the data source, an historical 

Fig. 8   Training error vs data set size used in the weekly case study

Fig. 9   Training error vs data set size used in the monthly case study

Fig. 10   Training data, test data of the monthly case study neural net-
work

Fig. 11   Scattering of training and test data in the monthly case study
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experimental meteorological data series ranging from 1974 
to 1988 was used.

In this paper, the models developed were used to predict 
global radiation on Fortaleza. Located in the Northeastern 
region of Brazil, this semiarid meteorological coastal city 
is strongly influenced by El Niño and La Niña phenomena. 
It is, therefore, a unique set of unpaired climatological and 
geographical features in this type of work.

Previous standardization and data pre-processing pro-
vided the dataset to be used in the three case studies with 
varied sampling frequencies. As a result, a global solar 
radiation prediction neural network was created. Another 
unique feature is that the study applies multiple temporal 
bases, in which daily (as measured), weekly averaged and 
monthly averaged data allowed to evaluate the quality of the 
prediction over different sampling frequencies.

The analysis of the coefficient of determination for each 
case study provides to conclude that the monthly averaged 
prediction model was the most accurate. Furthermore, the 
44-year-long data set not only established and trained the 
ANNs models, but also assessed the influence of data set 
size on their performance. The models produced good results 
in line with MAPE benchmarking and excellent agreement 
to nRMSE benchmarking. For this, it concludes that it is at 
the same quality level of similar studies.

Acknowledgments  This study was financed in part by the Coordenação 
de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—
Finance Code 001, and the Conselho Nacional de Desenvolvimento 
Científico e Tecnológico (CNPq), Brazilian governmental agencies. 
The support received is gratefully acknowledged.

Compliance with ethical standards 

Conflict of interest  On behalf of all authors, the corresponding author 
states that there is no conflict of interest.

Open Access  This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat​iveco​
mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate 
credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made.

References

	 1.	 Shamshirband, S., Mohammadi, K., Tong, C.W., Zamani, M., 
Motamedi, Ch, S.: A Hybrid SVM-FFA Method for Prediction of 
Monthly Mean Global Solar Radiation. Spring, Vienna (2015)

	 2.	 Agência Nacional de Energia Elétrica (Brazilian Electricity Reg-
ulatory Agency): Nota técnica 0017/2015-Annex V: Análise de 
Impacto Regulatório. http://www2.aneel​.gov.br/aplic​acoes​/audie​
ncia/arqui​vo/2015/026/docum​ento/nota_tecni​ca_0017_2015_
srd_-_anexo​_v_-_air.pdf (2015). Accessed 18 Feb 2019

	 3.	 Marques Filho, E.P., Oliveira, A.P., Vita, W.A., Mesquita, F.L., 
Codato, G.E.J.F, Cassol, M.F.J.R.A.: Global, diffuse and direct 
solar radiation at the surface in the city of Rio de Janeiro: obser-
vational characterization and empirical modeling. Renew. Energy 
91, 64–74 (2016)

	 4.	 Lima, M.A.F., Carvalho, P.C., Carneiro, T.C., Leite, J.R., Bessa 
Neto, L.J.D., Rodrigues, G.K., Melo, F.E.D.: Portfolio theory 
applied to solar and wind resources forecast. IET Renew. Power 
Gener. 11(7), 973–978 (2017)

	 5.	 Paiva, G.M., Pimentel, S.P., Marra, E.G., Alvarenga, B.P.: Analy-
sis of inverter sizing ratio for PV systems considering local cli-
mate data in central Brazil. IET Renew. Power Gener. 11(11), 
1364–1370 (2017)

	 6.	 Paiva, G. M., Pimentel, S. P., Leva, S., Mussetta, M.: Intelligent 
approach to improve genetic programming based intra-day solar 
forecasting models. In: 2018 IEEE congress on evolutionary com-
putation (CEC) (pp. 1–8). IEEE (2018)

	 7.	 ENERGO O potencial de Energia Solar no Ceará. https​://energ​
o.eng.br/2017/05/o-poten​cial-de-energ​ia-solar​-no-ceara​/ (2017). 
Accessed 2 Aug 2017

	 8.	 Khatib, T., Mohamed, A., Sopian, K.: A review of solar energy 
modeling techniques. Renew. Sustain. Energy Rev. 16, 2864–2869 
(2012)

	 9.	 Hunt, L., Kuchar, L., Swanton, C.: Estimation of solar radiation 
for use in crop modeling. Agric. For. Meteorol. 91, 293–300 
(1998)

	10.	 Fan, J., Wang, X., Wu, L., Zhang, F., Bai, H., Lu, X., Xiang, Y.: 
New combined models for estimating daily global solar radia-
tion based on sunshine duration in humid regions: a case study in 
South China. Energy Convers. Manage. 156, 618–625 (2018)

	11.	 Quej, V.H., Almorox, J., Ibrakhimov, M., Saito, L.: Estimating 
daily global solar radiation by day of the year in six cities located 
in the Yucatán Peninsula, Mexico. J. Cleaner Prod. 141, 75–82 
(2017)

	12.	 Urraca, R., Martinez-De-pison, E., Sanz-Garcia, A., Antonanzas, 
J., Antonanzas-Torres, F.: Estimation methods for global solar 
radiation: case study evaluation of five different approaches in 
central Spain. Renew. Sustain. Energy Rev. 77, 1098–1113 (2017)

	13.	 Zhang, H., Xin, X., Li, L., Liu, Q.: Estimating global solar radia-
tion using a hybrid parametric model from MODIS data over the 
Tibetan Plateau. Solar Energy 112, 373–382 (2015)

	14.	 Jeong, D., St-Hilaire, A., Gratton, Y., Bélanger, C., Saad, C.: 
A guideline to select an estimation model of daily global solar 

Table 6   Error metrics of the 
obtained models

Source: author

Training Test

RMSE nRMSE (%) MAPE (%) R2 (%) RMSE nRMSE (%) MAPE (%) R2 (%)

Daily 0.952 15.57 14.59 35.67 8.76 6.29 14.87 50.26
Weekly 0.0828 13.68 12.51 64.98 0.0929 6.57 18.17 65.73
Monthly 0.0655 11.47 11.09 80.97 0.0858 6.42 20.83 78.58

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www2.aneel.gov.br/aplicacoes/audiencia/arquivo/2015/026/documento/nota_tecnica_0017_2015_srd_-_anexo_v_-_air.pdf
http://www2.aneel.gov.br/aplicacoes/audiencia/arquivo/2015/026/documento/nota_tecnica_0017_2015_srd_-_anexo_v_-_air.pdf
http://www2.aneel.gov.br/aplicacoes/audiencia/arquivo/2015/026/documento/nota_tecnica_0017_2015_srd_-_anexo_v_-_air.pdf
https://energo.eng.br/2017/05/o-potencial-de-energia-solar-no-ceara/
https://energo.eng.br/2017/05/o-potencial-de-energia-solar-no-ceara/


333International Journal of Energy and Environmental Engineering (2019) 10:319–334	

1 3

radiation between geostatistical interpolation and stochastic simu-
lation approaches. Renew. Energy 103, 70–80 (2017)

	15.	 Hocaoĝlu, F.: Stochastic approach for daily solar radiation mod-
eling. Sol. Energy 85, 278–287 (2011)

	16.	 Olatomiwa, L., Mekhilef, S., Shamshirband, S., Mohammadi, K., 
Petkovic, D., Ch, S.: A support vector machine-firefly algorithm-
based model for global solar radiation prediction. Sol. Energy 115, 
632–644 (2015)

	17.	 Ibrahim, I., Khatib, T.: A novel hybrid model for hourly global 
solar radiation prediction using random forests technique and fire-
fly algorithm. Energy Convers. Manage. 138, 413–425 (2017)

	18.	 Ayodele, T., Ogunjuyigbe, A., Monyei, C.: On the global solar 
radiation prediction methods. J. Renew. Sustain. Energy 8, 2 
(2016)

	19.	 Şen, Z.: Probabilistic innovative solar irradiation estimation. Int. 
J. Energy Res. 41(2), 229–239 (2017)

	20.	 Liu, H., Chen, C., Tian, H., Li, Y.: A hybrid model for wind speed 
prediction using empirical mode decomposition and artificial neu-
ral networks. Renew. Energy 48, 545–556 (2012)

	21.	 Liu, H., Duan, Z., Han, F., Li, Y.: Big multi-step wind speed 
forecasting model based on secondary decomposition, ensemble 
method and error correction algorithm. Energy Convers. Manage. 
156, 525–541 (2018)

	22.	 Fazelpour, F., Tarashkar, N., Rosen, M.: Short-term wind speed 
forecasting using artificial neural networks for Tehran, Iran. Int. 
J. Energy Environ. Eng. 7, 377–390 (2016)

	23.	 Deo, R.C., Şahin, M.: Forecasting long-term global solar radiation 
with an ANN algorithm coupled with satellite-derived (MODIS) 
land surface temperature (LST) for regional locations in Queens-
land. Renew. Sustain. Energy Rev. 72, 828–848 (2017)

	24.	 Shwetha, H., Kumar, D.N.: Prediction of high spatio-temporal 
resolution land surface temperature under cloudy conditions using 
microwave vegetation index and ANN. ISPRS J. Photogramm. 
Remote Sens. 117, 40–55 (2016)

	25.	 Alsina, E., Bortolini, M., Gamberi, M., Regattieri, A.: Artificial 
neural network optimisation for monthly average daily global solar 
radiation prediction. Energy Convers. Manage. 120, 320–329 
(2016)

	26.	 Behrang, M.A., Assareh, E., Ghanbarzadeh, A., Noghrehabadi, 
A.R.: The potential of different artificial neural network (ANN) 
techniques in daily global solar radiation modeling based on mete-
orological data. Sol. Energy 84, 1468–1480 (2010)

	27.	 Benghanem, M., Mellit, A., Alamri, S.: ANN-based modeling 
and estimation of daily global solar radiation data: a case study. 
Energy Convers. Manage. 50, 1644–1655 (2009)

	28.	 Çelik, Ö., Teke, A., Yildirim, H.: The optimized artificial neural 
network model with Levenberg-Marquardt algorithm for global 
solar radiation estimation in Eastern Mediterranean Region of 
Turkey. J. Clean. Prod. 116, 1–12 (2016)

	29.	 Chiteka, K., Enweremadu, C.: Prediction of global horizontal solar 
irradiance in Zimbabwe using artificial neural networks. J. Clean. 
Prod. 135, 701–711 (2016)

	30.	 Gairaa, K., Khellaf, A., Messlem, Y., Chellali, F.: Estimation of 
the daily global solar radiation based on Box-Jenkins and ANN 
models: a combined approach. Renew. Sustain. Energy Rev. 57, 
238–249 (2016)

	31.	 Hejase, H., Al-Shamisi, M.H., Assi, A.: Modeling of global hori-
zontal irradiance in the United Arab Emirates with artificial neural 
networks. Energy 77, 542–552 (2014)

	32.	 Mousavi, S., Mostafavi, E., Jiao, P.: Next generation prediction 
model for daily solar radiation on horizontal surface using a 
hybrid neural network and simulated annealing method. Energy 
Convers. Manage. 153, 671–682 (2017)

	33.	 Salcedo-Sanz, S., Casanova-Mateo, C., Pastor-Sánchez, A., 
Sánchez-Girón, M.: Daily global solar radiation prediction 

based on a hybrid Coral Reefs Optimization—Extreme Learning 
Machine approach. Sol. Energy 105, 91–98 (2014)

	34.	 Sharifi, S., Rezaverdinejad, V., Nourani, V.: Estimation of daily 
global solar radiation using wavelet regression, ANN, GEP and 
empirical models: a comparative study of selected temperature-
based approaches. J. Atmos. Solar Terr. Phys. 149, 131–145 
(2016)

	35.	 Wang, L., Kisi, O., Zounemat-Kermani, M., Salazar, G.A., Zhu, 
Z., Gong, W.: Solar radiation prediction using different tech-
niques: model evaluation and comparison. Renew. Sustain. Energy 
Rev. 61, 384–397 (2016)

	36.	 Yildrim, H., Çelik, Ö., Teke, A., Barutçu, B.: Estimating daily 
Global solar radiation with graphical user interface in Eastern 
Mediterranean region of Turkey. Renew. Sustain. Energy Rev. 82, 
1528–1537 (2018)

	37.	 Hiew, B.Y., Tan, S.C., Lim, W.S.: Intra-specific competitive co-
evolutionary artificial neural network for data classification. Neu-
rocomputing 185, 220–230 (2016)

	38.	 Szalkai, B., Grolmusz, V.: Near perfect protein multi-label clas-
sification with deep neural networks. Methods 132, 50–56 (2018)

	39.	 Sitton, J.D., Zeinali, Y.S.B.A.: Rapid soil classification using arti-
ficial neural networks for use in constructing compressed earth 
blocks. Constr. Build. Mater. 138, 214–221 (2017)

	40.	 Chen, N., Ribeiro, B., Vieira, A., Chen, A.: Clustering and visuali-
zation of bankruptcy trajectory using self-organizing map. Expert 
Syst. Appl. 40(1), 385–393 (2013)

	41.	 Negnevitsky, M.: Identification of failing banks using Clustering 
with self-organising neural networks. Procedia Comput. Sci. 108, 
1327–1333 (2017)

	42.	 Neghină, C., Zamfir, M., Ciuc, M., Sultana, A.: Automatic Detec-
tion of Hemangioma through a Cascade of Self-organizing Map 
Clustering and Morphological Operators. Procedia Comput. Sci. 
90, 145–150 (2016)

	43.	 Kessler, T., Sacia, E.R., Bell, A.T., Mack, J.H.: Artificial neural 
network based predictions of cetane number for furanic biofuel 
additives. Fuel 206, 171–179 (2017)

	44.	 Garcia, J.J., Garcia, F., Bermúdez, J., Machado, L.: Prediction of 
pressure drop during evaporation of R407C in horizontal tubes 
using artificial neural networks. Int. J. Refrig 85, 292–302 (2018)

	45.	 Bre, F., Gimenez, J.M., Fachinotti, V.D.: Prediction of wind pres-
sure coefficients on building surfaces using artificial neural net-
works. Energy Build. 158, 1429–1441 (2018)

	46.	 Baldominos, A., Saez, Y., Isasi, P.: Evolutionary convolutional 
neural networks: An application to handwriting recognition. Neu-
rocomputing 283, 38–52 (2018)

	47.	 Valero, D., Bung, D. B.: Artificial Neural Networks and pattern 
recognition for air-water flow velocity estimation using a single-
tip optical fibre probe. J. Hydro-environ. Res. 19, 150–159 (2018)

	48.	 Durodola, J., Li, N., Ramachandra, S., Thite, A.: A pattern recog-
nition artificial neural network method for random fatigue loading 
life prediction. Int. J. Fatigue 99(1), 55–67 (2017)

	49.	 Moura, E.P., Melo Junior, F.E.A., Damasceno, F.F.R., Figueiredo, 
L.C.C., Andrade, C.F.A., Almeida, M.C., Rocha, P.A.C.: Clas-
sification of imbalance levels in a scaled wind turbine through 
detrended fluctuation analysis of vibration signals. Renew. Energy 
96(A), 993–1002 (2016)

	50.	 Haykin, S.: Neural networks: a comprehensive foundation, 2nd 
edn. Prentice Hall, Upper Saddle River (1998)

	51.	 Bishop, C.M.: Pattern recognition and machine learning, 1st edn. 
Springer, New York (2007)

	52.	 Quej, V.H., Almorox, J., Arnaldo, J.A., Saito, L.: ANFIS, SVM 
and ANN soft-computing techniques to estimate daily global solar 
radiation in a warm sub-humid environment. J. Atmos. Solar-Ter-
restrial Phys. 155, 62–70 (2017)



334	 International Journal of Energy and Environmental Engineering (2019) 10:319–334

1 3

	53.	 Bosch, J., Lopez, G., Batlles, F.: Daily solar irradiation estimation 
over a mountainous area using artificial neural networks. Renew. 
Energy 33, 1622–1628 (2008)

	54.	 Antonanzas-Torres, F., Sanz-Garcia, A., Martínez-De-pisón, F.J., 
Perpiñán-Lamigueiro, O.: Evaluation and improvement of empiri-
cal models of global solar irradiation: case study northern Spain. 
Renew. Energy 60, 604–614 (2013)

	55.	 Moghaddamnia, A., Remesan, R., Kashani, M.H., Mohammadi, 
M., Han, D., Piri, J.: Comparison of LLR, MLP, Elman, NNARX 
and ANFIS Models—with a case study in solar radiation estima-
tion. J. Atmos. Solar Terr. Phys. 71(8–9), 975–982 (2009)

	56.	 Peng, C.-C., Magoulas, G.D.: Nomonotone BFGS-trained recur-
rent neural networks for temporal sequence processing. Appl. 
Math. Comput. 217, 5421–5441 (2011)

	57.	 Dai, Y.-H.: Convergence properties of the BFGS algorithm. Soc. 
Indus. Appl. Math. 13, 693–701 (2002)

	58.	 TEAM, R. Core. R: A language and environment for statistical 
computing. R Foundation for Statistical Computing, Vienna, Aus-
tria. 2018. URL http://www.R-proje​ct.org. Accessed 20 June 2018

	59.	 Duffie, J.A., Beckman, W.A.: Solar engineering of thermal pro-
cesses, 4th edn. Wiley, New Jersey (2013)

	60.	 LeCun, Y. A., Bottou, L., Orr, G. B., & Müller, K. R.: Efficient 
backprop. In: Neural networks: Tricks of the trade (pp. 9–48). 
Springer, Berlin, Heidelberg (2012)

	61.	 Prechelt, L.: Early stopping—but when? In: Montavon, G., Orr, 
G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. 

LNCS, vol. 7700, pp. 53–67. Springer, Heidelberg (2012). https​
://doi.org/10.1007/978-3-642-35289​-8_5

	62.	 Van der Baan, M.J.C.: Neural networks in geophysical applica-
tions. Geophysics 65, 1032–1047 (2000)

	63.	 Yadav, A.K., Malik, H.S.C.: Selection of most relevant input 
parameters using WEKA for artificial neural network based solar 
radiation prediction models. Renew. Sustain. Energy Rev. 31, 
509–519 (2014)

	64.	 Abedin, Z., Barua, M., Paul, S., Akther, S., Chowdhury, R., 
Chowdhury, M. S. U.: A model for prediction of monthly solar 
radiation of different meterological locations of Bangladesh using 
aritficial neural network data mining tool. In: 2017 International 
Conference on Electrical, Computer and Communication Engi-
neering (ECCE) (pp. 692–697). IEEE (2017)

	65.	 Li, M.-F., Tang, X.-P., Wu, W., Liu, H.-B.: General models for 
estimating daily global solar radiation for different solar radiation 
zones in mainland Chine. Energy Convers. Manag. 70, 139–148 
(2013)

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

http://www.R-project.org
https://doi.org/10.1007/978-3-642-35289-8_5
https://doi.org/10.1007/978-3-642-35289-8_5

	Estimation of daily, weekly and monthly global solar radiation using ANNs and a long data set: a case study of Fortaleza, in Brazilian Northeast region
	Abstract
	Introduction
	Related works and research gaps
	Climate and region
	Input parameters
	Data set size
	Training method
	Scope of present work

	Artificial neural networks (ANNs)
	The Broyden–Fletcher–Goldfarb–Shanno algorithm
	ANNs setup, training and error assessment
	Experimental data pre-processing
	Case study

	Results and discussion
	Conclusion
	Acknowledgments 
	References




