Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.ufc.br/handle/riufc/70737
Tipo: Artigo de Evento
Título : Identification of separable systems using trilinear filtering
Autor : Ribeiro, Lucas Nogueira
Almeida, André Lima Férrer de
Mota, João César Moura
Fecha de publicación : 2015
Editorial : International Workshop on Computational Advances in Multi-Sensor Adaptive Processing
Citación : RIBEIRO, L. N.; ALMEIDA, A. L. F.; MOTA, J. C. M. Identification of separable systems using trilinear filtering. In: INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTATIVE PROCESSING, 6., 2015, Cancún. Anais... Cancún: IEEE, 2015. p. 189-192.
Abstract: Linear filtering methods are well known and have been successfully applied in system identification and equalization problems. However, they become unpractical when the number of parameters to estimate is very large. The recently proposed assumption of system separability allows the development of computationally efficient alternatives to classic adaptive methods in this scenario. In this work, we show that system separability calls for multilinear system representation and filtering. Based on this parallel, the proposed filtering framework consists of a trilinear extension of the classical Wiener-Hopf (WH) solution that exploits the separability property to solve the supervised identification problem. Our numerical results shows the proposed algorithm can provide a better accuracy than the classical WH solution which ignores the multilinear system representation.
URI : http://www.repositorio.ufc.br/handle/riufc/70737
Aparece en las colecciones: DETE - Trabalhos apresentados em eventos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
2015_eve_jcmmota.pdf429,16 kBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.