Por favor, use este identificador para citar o enlazar este ítem:
http://repositorio.ufc.br/handle/riufc/70720
Tipo: | Artigo de Evento |
Título : | Improved adaline networks for robust pattern classification |
Autor : | Mattos, César Lincoln Cavalcante Santos, José Daniel de Alencar Barreto, Guilherme de Alencar |
Palabras clave : | Adaptive linear classifiers;Least mean squares;Labelling errors;Outliers;M-estimation;Robust pattern recognition |
Fecha de publicación : | 2014 |
Editorial : | International Conference on Artificial Neural Networks |
Citación : | MATTOS, C. L. C.; SANTOS, J. D. A.; BARRETO, G. A. Improved adaline networks for robust pattern classification. In: INTERNATIONAL CONFERENCE ON ARTIFICIAL NEURAL NETWORKS, 24., 2014, Hamburgo. Anais... Hamburgo: Springer, 2014. p. 579-586. |
Abstract: | The Adaline network [1] is a classic neural architecture whose learning rule is the famous least mean squares (LMS) algorithm (a.k.a. delta rule or Widrow-Hoff rule). It has been demonstrated that the LMS algorithm is optimal in H∞ sense since it tolerates small (in energy) disturbances, such as measurement noise, parameter drifting and modelling errors [2,3]. Such optimality of the LMS algorithm, however, has been demonstrated for regression-like problems only, not for pattern classification. Bearing this in mind, we firstly show that the performances of the LMS algorithm and variants of it (including the recent Kernel LMS algorithm) in pattern classification tasks deteriorates considerably in the presence of labelling errors, and then introduce robust extensions of the Adaline network that can deal efficiently with such errors. Comprehensive computer simulations show that the proposed extension consistently outperforms the original version. |
URI : | http://www.repositorio.ufc.br/handle/riufc/70720 |
Aparece en las colecciones: | DETE - Trabalhos apresentados em eventos |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
2014_eve_gabarreto.pdf | 292,63 kB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.