Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.ufc.br/handle/riufc/70720
Tipo: Artigo de Evento
Título : Improved adaline networks for robust pattern classification
Autor : Mattos, César Lincoln Cavalcante
Santos, José Daniel de Alencar
Barreto, Guilherme de Alencar
Palabras clave : Adaptive linear classifiers;Least mean squares;Labelling errors;Outliers;M-estimation;Robust pattern recognition
Fecha de publicación : 2014
Editorial : International Conference on Artificial Neural Networks
Citación : MATTOS, C. L. C.; SANTOS, J. D. A.; BARRETO, G. A. Improved adaline networks for robust pattern classification. In: INTERNATIONAL CONFERENCE ON ARTIFICIAL NEURAL NETWORKS, 24., 2014, Hamburgo. Anais... Hamburgo: Springer, 2014. p. 579-586.
Abstract: The Adaline network [1] is a classic neural architecture whose learning rule is the famous least mean squares (LMS) algorithm (a.k.a. delta rule or Widrow-Hoff rule). It has been demonstrated that the LMS algorithm is optimal in H∞ sense since it tolerates small (in energy) disturbances, such as measurement noise, parameter drifting and modelling errors [2,3]. Such optimality of the LMS algorithm, however, has been demonstrated for regression-like problems only, not for pattern classification. Bearing this in mind, we firstly show that the performances of the LMS algorithm and variants of it (including the recent Kernel LMS algorithm) in pattern classification tasks deteriorates considerably in the presence of labelling errors, and then introduce robust extensions of the Adaline network that can deal efficiently with such errors. Comprehensive computer simulations show that the proposed extension consistently outperforms the original version.
URI : http://www.repositorio.ufc.br/handle/riufc/70720
Aparece en las colecciones: DETE - Trabalhos apresentados em eventos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
2014_eve_gabarreto.pdf292,63 kBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.