Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.ufc.br/handle/riufc/70707
Tipo: Artigo de Evento
Título : Approximate linear dependence as a design method for Kernel prototype-based classifiers
Autor : Coelho, David Nascimento
Barreto, Guilherme de Alencar
Palabras clave : Prototype-based classifiers;Sparsification;Approximate linear dependence;Kernel classifiers;Kernel SOM
Fecha de publicación : 2019
Editorial : International Workshop on Self-Organizing Maps
Citación : COELHO, D. N.; BARRETO, G. A. Approximate linear dependence as a design method for Kernel prototype-based classifiers. In: INTERNATIONAL WORKSHOP ON SELF-ORGANIZING MAPS, 13., 2019, Barcelona. Anais... Barcelona, 2013. p. 241-250.
Abstract: The approximate linear dependence (ALD) method is a sparsification procedure used to build a dictionary of samples extracted from a data set. The extracted samples are approximately linearly independent in a high-dimensional kernel reproducing Hilbert space. In this paper, we argue that the ALD method itself can be used to select relevant prototypes from a training data set and use them to classify new samples using kernelized distances. The results obtained from intensive experimentation with several datasets indicate that the proposed approach is viable to be used as a standalone classifier.
URI : http://www.repositorio.ufc.br/handle/riufc/70707
Aparece en las colecciones: DETE - Trabalhos apresentados em eventos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
2019_eve_gabarreto.pdf346,58 kBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.