Use este identificador para citar ou linkar para este item:
http://repositorio.ufc.br/handle/riufc/70681
Tipo: | Artigo de Evento |
Título: | Competitive neural networks for fault detection and diagnosis in 3G cellular systems |
Autor(es): | Barreto, Guilherme de Alencar Mota, João César Moura Souza, Luís Gustavo Mota Frota, Rewbenio Araújo Aguayo, Leonardo Yamamoto, José Sindi Macedo, Pedro Eduardo de Oliveira |
Data do documento: | 2004 |
Instituição/Editor/Publicador: | Telecommunications and Networking |
Citação: | BARRETO, G. A. et al. Competitive neural networks for fault detection and diagnosis in 3G cellular systems. In: TELECOMMUNICATIONS AND NETWORKING, 11., 2004, Fortaleza. Anais... Fortaleza, 2004. p. 1-7. |
Abstract: | We propose a new approach to fault detection and diagnosis in third-generation (3G) cellular networks using competitive neural algorithms. For density estimation purposes, a given neural model is trained with data vectors representing normal behavior of a CDMA2000 cellular system. After training, a normality profile is built from the sample distribution of the quantization errors of the training vectors. Then, we find empirical confidence intervals for testing hypotheses of normal/abnormal functioning of the cellular network. The trained network is also used to generate inference rules that identify the causes of the faults. We compare the performance of four neural algorithms and the results suggest that the proposed approaches outperform current methods. |
URI: | http://www.repositorio.ufc.br/handle/riufc/70681 |
Aparece nas coleções: | DETE - Trabalhos apresentados em eventos |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
2004_eve_gabarreto.pdf | 119,74 kB | Adobe PDF | Visualizar/Abrir |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.