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Abstract. We propose a new approach to fault detection and diagnosis
in third-generation (3G) cellular networks using competitive neural algo-
rithms. For density estimation purposes, a given neural model is trained
with data vectors representing normal behavior of a CDMA2000 cellular
system. After training, a normality profile is built from the sample dis-
tribution of the quantization errors of the training vectors. Then, we find
empirical confidence intervals for testing hypotheses of normal/abnormal
functioning of the cellular network. The trained network is also used to
generate inference rules that identify the causes of the faults. We com-
pare the performance of four neural algorithms and the results suggest
that the proposed approaches outperform current methods.

1 Introduction

The third generation (3G) of wireless systems promise to provide mobile users
with ubiquitous access to multimedia information services, providing higher data
rates by means of new radio access technologies, such as UMTS, WCDMA and
CDMA2000 [1]. This multi-service aspect brings totally new requirements into
network optimization process and radio resource management algorithms, which
differ significantly from traditional speech-dominated second generation (2G) ap-
proach. Because of these requirements, operation and maintenance of 3G cellular
networks will be challenging.

The goal of this paper is to propose straightforward methods to deal with
fault detection and diagnosis (FDD) of 3G cellular systems using competitive
learning algorithms [2]. We formalize our approach within the context of statis-
tical hypothesis testing, comparing the performance of four neural algorithms
(WTA, FSCL, SOM and Neural-Gas). We show through simulations that the
proposed methods outperform current standard approaches for FDD tasks. We
also evaluate the sensitivity of the proposed approaches to changes in the train-
ing parameters of the neural models, such as number of neurons and the number
of training epochs.

https://www.researchgate.net/publication/234820892_Third_Generation_Mobile_Communication_Systems?el=1_x_8&enrichId=rgreq-0106854a003d9afaa7c5b345575bd715-XXX&enrichSource=Y292ZXJQYWdlOzIyMTQ5MjU0MTtBUzoxMDQzODU0NTU1OTE0MzFAMTQwMTg5ODg0MTEyNg==


The remainder of the paper is organized as follows. In Section 2, we describe
the neural models and the data for training them. In Section 3, we introduce
a general approach for the fault detection task and a method to generating
inference rules from a trained neural model. Computer simulations for several
scenarios of the cellular system are presented in Section 4. The paper is concluded
in Section 5.

2 Competitive Neural Models

Competitive learning models are based on the concept of winning neuron, defined
as the one whose weight vector is the closest to the current input vector. During
the learning phase, the weights of the winning neurons are modified incrementally
in order to extract average features from the input patterns. Using Euclidean
distance, the simplest strategy to find the winning neuron, i∗(t), is given by:

i∗(t) = arg min
∀i

‖x(t) − wi(t)‖ (1)

where x(t) ∈ ℜn denotes the current input vector, wi(t) ∈ ℜn is the weight
vector of neuron i, and t symbolizes the iterations of the algorithm. Then, the
weight vector of the winning neuron is modified as follows:

wi∗(t + 1) = wi∗(t) + η(t)[x(t) − wi∗(t)] (2)

where 0 < η(t) < 1 is the learning rate, which should decay with time to guaran-
tee convergence of the weight vectors to stable states. The competitive learning
strategy in (1) and (2) are referred to as Winner-Take-All (WTA), since only the
winning neuron has its weight vector modified per iteration of the algorithm. In
addition to the plain WTA, we also simulate three simple variants of it, namely:
(1) the Frequency-Sensitive Competitive Learning (FSCL) [3], the well-known
Self-Organizing Map (SOM) [4], and the Neural-Gas algorithm (NGA) [5].

To evaluate the performance of these competitive models on FDD tasks we
need to define a set of KPIs (Key Parameter Indicators), which consist of a
number of variables responsible for monitoring the QoS of a cellular system.
These KPIs are gathered, for example, from the cellular system’s operator, drive
tests, customer complaints or protocol analyzers, and put together in a pattern
vector x(t), which summarizes the state of the system at time t:

x(t) = [KPI1(t) KPI2(t) · · · KPIn(t)]
T

(3)

where n is the number of KPIs chosen. Among the huge amount of KPIs available
for selection, we have chosen the Number of Users, the Downlink Throughput (in
Kb/s), the Noise Rise (in dB), and the Other-Cells Interference (in dBm). The
data to train the neural models were generated by a static simulation tool. In
addition, each component xj is normalized to get zero mean and unity variance.
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3 Fault Detection and Diagnosis via Competitive Models

Once we choose one of the neural models presented in Section 2 and train it with
state vectors x(t) collected during normal functioning of the cellular network (i.e.
no examples of abnormal features are available for training). After the training
phase is completed, we compute the quantization error associated to each state
vector x(t), t = 1, . . . , N , used during training, as follows:

e(t) = ‖E(t)‖ = ‖x(t) − wi∗(t)‖ (4)

where E(t) denotes the quantization error vector and i∗ is the winning neuron
for the state vector x(t). In other words, the quantization error is simply the
distance from the state vector x(t) to the weight vector wi∗(t) of its winning
neuron. We refer to the distribution of N samples of quantization errors resulting
from the training vectors as the normality profile of the cellular system.

Using the normality profile we can then define a numerical interval represent-
ing normal behavior of the system by computing a lower and upper limits via
percentiles. In this paper, we are interested in an interval within which we can
find a given percentage p = 1−α (e.g. p = 0.95) of normal values of the variable.
In Statistics jargon, the probability p defines the confidence level and, hence, the
normality interval [e−p , e+

p ] is then called (empirical) confidence interval. This
interval can then be used to classifying a new state vector into normal/abnormal
by means of a simple hypothesis test:

IF enew ∈ [e−p , e+
p ]

THEN x
new is NORMAL (5)

ELSE x
new is ABNORMAL

The null-hypothesis, H0, and the alternative hypothesis, H1, are defined as:

– H0: The vector x
new reflects the NORMAL activity of the cellular system.

– H1: The vector x
new reflects the ABNORMAL activity of the cellular system.

Once a fault has been detected, it is necessary to investigate which of the
attributes (KPIs) of the problematic input vector are responsible for the fault.
From the weight vectors of a trained competitive neural model it is possible to
extract inference rules that can determine the faulty KPIs in order to invoke the
cellular network supervisor system to take any corrective action.

All the previous works generate inference rules through the analysis of the
clusters formed by a subset of the NORMAL/ABNORMAL state vectors [7].
This approach is not adequate for our purposes, since the state vectors reflect
only the normal functioning of the cellular network. We propose instead to eval-
uate the absolute values of the quantization errors of each KPI, computed for
each training state vector:

ABS (E(t)) =











|E1(t)|
|E2(t)|

...
|En(t)|











=











|x1(t) − wi∗1(t)|
|x2(t) − wi∗2(t)|

...
|xn(t) − wi∗n(t)|











(6)
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This approach is similar to that used in the fault detection task, but now we
built n sample distributions using the absolute values of each component of the
quantization error vector, E. For the detection task we used only one sample
distribution built from the norm of the quantization error vector, as described
in (4). Then, for all the sample distributions, { |Ej(t)| }, t = 1, . . . , N and j =
1, . . . , n, we compute the corresponding confidence intervals [ |E−

j |, |E+

j | ], where

|E−

j | and |E+

j | are the lower and upper bounds of the j-th interval.
Thus, whenever an incoming state vector x

new is signalized as abnormal by
the fault detection stage, we take the absolute value of each component Enew

j of
the corresponding quantization error vector and execute the following test:

IF |Enew
j | ∈ [ |E−

j |, |E+

j | ],

THEN xj is normal.

ELSE xj is one (possible) cause of the fault.

In words, if the quantization error computed for the KPI xj is within the range
defined by the interval [ |E−

j |, |E+

j | ], then it is not responsible for the fault previ-
ously detected, otherwise it will be indicated as a possible cause of the detected
fault. If none of the KPIs are found to be faulty, then a false alarm will be
discovered and then corrected. Confidence levels of 95% and 99% are used.

4 Computer Simulations

The 3G cellular environment used for system simulations is macrocellular, with
two rings of interfering cells around the central one, resulting in a total of 19
cells. Other configurations are possible, with 1, 7 or 37 cells. All base stations use
omnidirectional antennas at 30 meters above ground level, and the RF propaga-
tion model is the classic Okumura-Hata for 900MHz carrier frequency. Quality
parameters, such as Eb/N

Target
t and maximum Noise Rise level are set to 5dB

and 6dB, respectively. The number of initial mobile users is 60, which can be
removed from the system by a power control algorithm. For each Monte Carlo
simulation (drop) of the celular environment, a set of KPIs is stored and used
for ANN training/testing procedures.

The first set of simulations evaluates the performance of the neural models,
by quantifying the occurrence of false alarms after training them. The chosen
network scenario corresponds to 100 mobile stations initially trying to connect
to 7 base stations. No shadow fading is considered, and only voice services are
allowed. Each data set corresponding to a specific network scenario is formed
by 500 state vectors (collected from 500 drops of the static simulation tool),
from which 400 vectors are selected randomly for training and the remaining
100 vectors are used for testing the neural models.

The results (in percentage) are organized in Table 1, where we show the
intervals found for two confidence levels (95% and 99%). For comparison pur-
poses, we show the results obtained for the single threshold approach. The error
rates were averaged for 100 independent training runs. For all neural models,



Table 1. False alarm (FA) rates and confidence intervals for the various neural models.

Proposed Approach Approach by [6]
Model CI, FA (95%) CI, FA (99%) CI, FA (95%) CI, FA (99%)

WTA [0.366, 1.534], 12.43 [0.074, 1.836], 5.41 [0.000, 0.465], 17.91 [0.000, 1.018], 7.13

FSCL [0.214, 1.923], 10.20 [0.136, 4.584], 1.80 [0.000, 1.126], 12.20 [0.000, 0.385], 3.00

NGA [0.277, 1.944], 9.50 [0.1651, 4.218], 2.10 [0.000, 1.329], 10.10 [0.000, 0.941], 2.30

SOM [0.361, 1.815], 8.75 [0.187, 2.710], 1.43 [0.000, 1.122], 13.28 [0.000, 1.191], 2.71
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Fig. 1. Error rates of false alarms versus (a) the number of neurons (FSCL) and (b)
the number of training epochs (SOM).

the number of neurons and the number of training epochs were set to 20 and 50,
respectively. As expected, the NGA/SOM models performed much better than
the WTA/FSCL models.

The second set of simulations evaluates the sensitivity of the neural models to
changes in their training parameters. The goal is to understand how the number
of neurons and the number of training epochs affect the occurrence of false alarms
after training the neural models. The results are shown in Figure 1. For each
case, we compare the interval-based approach proposed in this paper with the
single threshold presented in [6]. The chosen network scenario corresponds to
120 mobile stations initially trying to connect to 7 base stations, for which fast
and shadow fading are considered this time. Voice and data services are allowed.
For the sake of simplicity, results are shown for one neural model only, since
similar patterns are observed for the others.



Table 2. Results (in percentage) for the joint fault detection and diagnosis tasks.
FA=false alarm, AA=Absence of alarm.

Neural p = 95% p = 99 %
Model FA AA PERF FA AA PERF

WTA 5.54 0.00 91.50 2.20 0.04 95.80

FSCL 4.30 0.00 92.83 1.10 0.00 98.17

NGA 5.54 0.00 91.50 0.65 0.00 99.00

SOM 4.67 0.00 92.80 0.98 0.00 98.50

For a given value of a parameter (e.g. the number of neurons), the neu-
ral model is trained 100 times with different initial weights. For each training
run, state vectors are selected randomly for the training and testing data sets.
Also, the ordering of presentation of the state vectors for each training epoch is
changed randomly. Then, the final value of the false alarm error rate is averaged
for 100 testing runs. These independent training and testing runs are necessary
to avoid biased estimates of the error rate.

In Figure 1a, the number of neurons is varied from 1 to 200, and each training
run lasts 50 epochs. In Figure 1b, the number of epochs is varied from 1 to 100,
while the number of neurons is fixed at 30. As a general conclusion, we can infer
that in average the proposed approach produces better results than the single
threshold method.

The last set of simulations evaluate the proposed methods for generating
inference rules from competitive ANNs. Table 2 depicts the obtained results,
averaged over 100 Monte Carlo simulations. ERROR I refers to the false-alarm
rate, while ERROR II refers to the absence-of-alarm rate. The indicator PERF
(%) denotes the mean accuracy of the FDD system and it is computed as
PERF = 100 · (1 − ERRORS/S), where S is the total number of state vectors
used for testing. For each simulation, there were 8 state vectors corresponding to
ABNORMAL conditions of the cellular network, and 52 state vectors reflecting
NORMAL conditions. Thus, we have S = 60. One can infer that the maximum
possible value of ERRORS is S, reached only in the case of a very unreliable
FDD system.

Two faulty state vectors per KPI were simulated by adding or subtracting
random values obtained from Gaussian distributions with standard deviations
greater than 1. The underlying idea of this procedure is to generate random
values outside the range of normality of each KPI, and then, to test the sensitivity
of the FDD system. It is worth emphasizing that all neural models performed
very well, irrespective to their performances in the fault detection task. The only
remaining error is the false alarm, which is the less crucial in a cellular network.
Even this type of error has presented a very low rate of occurrence. All the
ABNORMAL vectors have been found and his causes correctly assigned, i.e., all
the faulty KPIs inserted in each ABNORMAL state vector have been detected.



5 Conclusion

In this paper we proposed general methods for fault detection and diagnosis
in 3G cellular networks using competitive neural models. Unlike the available
qualitative methods [8–10], the approach we took is focused on quantitative (nu-
merical) results, more adequate for online performance analysis, being based on
a statistically-oriented and widely accepted method of computing confidence in-
tervals. Our methods outperformed current available single-threshold methods
for FDD tasks.
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1. Prasad, R., Mohr, W., Konäuser, W.: Third Generation Mobile Communication
Systems - Universal Personal Communications. Artech House Publishers (2000)

2. Principe, J.C., Euliano, N.R., Lefebvre, W.C.: Neural and Adaptive Systems:
Fundamentals through Simulations. John Wiley & Sons (2000)

3. Ahalt, S., Krishnamurthy, A., Cheen, P., Melton, D.: Competitive learning algo-
rthms for vector quantization. Neural Networks 3 (1990) 277–290

4. Kohonen, T.: The self-organizing map. Proceedings of the IEEE 78 (1990) 1464–
1480

5. Martinetz, T.M., Schulten, K.J.: A ‘neural-gas’ network learns topologies. In Ko-
honen, T., Makisara, K., Simula, O., Kangas, J., eds.: Artificial Neural Networks.
North-Holland, Amsterdam (1991) 397–402
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