Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/70632
Tipo: Artigo de Evento
Título: Rotation-invariant image description from independent component analysis for classification purposes
Autor(es): Silva, Rodrigo Dalvit Carvalho da
Thé, George André Pereira
Medeiros, Fátima Nelsizeuma Sombra de
Palavras-chave: Independent component analysis;Invariant rotation;Pattern recognition
Data do documento: 2015
Instituição/Editor/Publicador: International Conference on Informatics in Control, Automation and Robotics
Citação: SILVA, R. D. C.; THÉ, G. A. P.; MEDEIROS, F. N. S. Rotation-invariant image description from independent component analysis for classification purposes. In: INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS, 12., 2015, Colmar. Anais... Colmar: IEEE, 2015. p. 1-7.
Abstract: Independent component analysis (ICA) is a recent technique used in signal processing for feature description in classification systems, as well as in signal separation, with applications ranging from computer vision to economics. In this paper we propose a preprocessing step in order to make ICA algorithm efficient for rotation invariant feature description of images. Tests were carried out on five datasets and the extracted descriptors were used as inputs to the k-nearest neighbor (k-NN) classifier. Results showed an increasing trend on the recognition rate, which approached 100%. Additionally, when low-resolution images acquired from an industrial time-of-flight sensor are used, the recognition rate increased up to 93.33%.
URI: http://www.repositorio.ufc.br/handle/riufc/70632
Aparece nas coleções:DETE - Trabalhos apresentados em eventos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2015_eve_gapthe.pdf545,29 kBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.