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Abstract: Independent component analysis (ICA) is a recent technique used in signal processing for feature 
description in classification systems, as well as in signal separation, with applications ranging from 
computer vision to economics. In this paper we propose a preprocessing step in order to make ICA 
algorithm efficient for rotation invariant feature description of images. Tests were carried out on five 
datasets and the extracted descriptors were used as inputs to the k-nearest neighbor (k-NN) classifier. 
Results showed an increasing trend on the recognition rate, which approached 100%. Additionally, when 
low-resolution images acquired from an industrial time-of-flight sensor are used, the recognition rate 
increased up to 93.33%. 

1 INTRODUCTION 

The human ability to recognize objects regardless of 
eventual rotation, translation or scalling 
transformation is one of the most basic and 
important features for human-environment 
interaction (Cichy, 2013). This recognition ability 
also provides human beings with the unique ability 
of sensing and actuating in a wide range of 
situations. In addition, it enables object labeling 
wherever it is located and whatever it is oriented on 
a scene. 

In computer vision applications, a fundamental 
issue is to recognize objects regardless of viewpoint 
transformations. Particularly, in industrial 
applications such as object counting and selection in 
conveyor belts, pattern recognition is worldwide 
used. In these applications, object recognition 
implies label assignment according to its feature 
description. By object description it is meant one 
with as few data as possible, thus allowing for fast 
and, eventually, all-embedded implementations. 

Classical methods for 2-D object recognition 
include B- Spline moment method (Huang and 
Cohen, 1996), moment methods (Hu, 1962), (Zhao 
and Chen, 1997), (Mukundan, 2001), Fourier and 
Wavelet transform methods based on object contour 
(Oirrak et al., 2002), (Khalil and Bayoumi, 2002) 
(Huang et al., 2005). 

In the last decade, ICA has been claimed to offer 
powerful feature description from a reduced set of 
descriptors. Essentially, it is a blind source 
separation technique, which estimates components 
that are as independent as possible (Hyvärinen et al., 
2001). Pioneering this field was the work on the 
separation of two physiological signals (Jutten and 
Herault, 1991), and it has been established as an 
interesting tool for research. In fact, significant 
advances have been achieved in terms of efficiency 
of algorithms and range of applications where ICA 
can be used, as well. Therefore, interest concerning 
this technique has increased in electrical power field 
(Lima et al., 2012), computer vision (Pan et al., 
2013), face recognition (Sanchetta et al., 2013), 
neuroimaging (Khorshidi et al. 2014) (Tong et al., 
2013), neurocomputing (Park et al. 2014) (Rojas et 
al. 2013), biomedical signal processing (Sindhumol 
et al. 2013), computational statistics (Chattopadhyay 
et al., 2013), economic modeling (Lin and Chiu, 
2013), chemistry (Masoum et al. 2013), etc. 

ICA solves the problem of suitably representing 
multivariate data by linearly decomposing a random 
vector x, into components, s, that are statistically 
independent, according to Eq. (1) below. Main goal 
is to estimate the independent components (ICs), or 
the mixing matrix A only from the observed data x. 

x= A s  (1) 
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In order to make ICA estimation possible, the 
ICs must be non-gaussian; this non-gaussianity 
assumption in ICA mixture modeling is probably the 
main reason of the conducted researches on the field 
(Hyvärinen and Oja, 2000). Another known 

restriction in ICA is that it is not rotation invariant; 
this means that rotation of the observers affects the 
estimation of the mixing matrix and the ICs, as well. 
Therefore, the ability of representing rotating objects 
would be compromised, in principle.

In the literature, works discussing the issued of 
rotation invariance generally refer to (Huang et al., 
2005) and (Ali et al., 2006), whose methods also 
consider the  translation and scaling transformations. 
The former introduces a new scheme for affine 
invariant description and affine motion estimation 
contour-based depiction extracted by ICA. The latter 
is an invariant description method based on a 
normalized affine-distorted and noise-corrupted 
object boundary.  

As an alternative to face the second restriction, in 
this paper we propose to use ordering preprocessing 
step as a way to make ICA robust to rotation 
transformation of the observers, so that getting 
rotation-invariant image descriptors. This ordering 
step is accomplished by making the input vector to 
undergo a nonlinear transformation, here expressed 
in terms of a matrix λ. 

Then, to evaluate the proposal, we performed a 
simple k-Nearest Neighbor classifier (k-NN) on 
various image database to show that more efficient 
image descriptors can be obtained if this 
preprocessing takes place. 

This paper is organized as follows: Section 2 
briefly describes fundamentals of ICA and the 
proposed preprocessing step for ICA-based rotation 
invariant image feature extraction. In section 3 the 
datasets are described and discussed along with the 
experimental results of a classification system. 
Finally, in section 4 conclusions are drawn. 

2 BASICS OF ICA 

ICA is a mathematical technique that reveals hidden 
factors that underlie a set of random variables, which 
are assumed non-gaussian and mutually statistically 
independent. It is also described as a statistical 
signal processing technique whose goal is to linearly 
decompose a random vector into components that 
are not only uncorrelated, but also as independent as 
possible (Fan et al., 2002). Thus, ICA can be 
considered as a generalization of the principal 
component analysis (PCA). PCA generates a 
representation of data inputs based on uncorrelated 
variables, whereas ICA provides a representation 
based on statistically independent variables (Déniz 
et al., 2003). 

The basic definition of ICA is given in the 
following. Given a set of observations of random 
variables x1(t), x2(t). ...xn(t), where t is the time or 
sample index, assume that they are generated as a 
linear mixture of independent components s1(t), s2(t). 
...sn(t) (Huang et al., 2005): 

x= A (s1(t) , s2(t) , ... , sn(t ))
T= As

 (2) 

where A is an unknown mixture matrix, A ϵ 

Rn×n
 (Huang et al., 2005). The ICA model, Eq. (1), 

describes how the observed data are generated by a 
process of mixing the independent components s. 
ICs are latent variables, what means that they cannot 
be directly observed. Thus, the classic ICA problem 
consists in estimating A and s, when only x is 
observed, provided that the observers, collecting the 
mixtures and representing the rows of A, be 
independent, so that A is invertible (Bizon et al., 
2013) (Huang et al., 2005). 

After estimating the matrix A properly, the 
problem stated by Eq. (1) can be rewritten as: 

s= A− 1 x=Wx , (3) 

in such a way that a linear combination s=Wx is 
the optimal estimation of the independent source 
signals s (Bizon et al., 2013). 

Under the assumption of the statistical 
independence of the components, and that they are 
characterized by a non-gaussian distribution, the 
basic ICA problem stated in Eqs. (1) and (2) can be 
solved by maximizing the statistical independence of 
the estimates s (Bizon et al., 2013). 

On the process of finding the matrix W, some 
useful preprocessing techniques are used in order to 
facilitate the calculation (Fan et al., 2002). There are 
two quite standard preprocessing steps in ICA. The 
first one moves the data center to the origin by 
subtracting the data mean as follows 

~x= x− E {x }  (4) 

The second step consists in whitening data, i.e., 
by applying a data transform and providing 
uncorrelated components of unit variance, 

z= V ~x , (5) 

where V is the whitening matrix and z is the 
whitened data. 
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ICA applications on pattern recognition of 
rotated images require as training step the random 
variables to be the training images. Letting xi to be a 
vectorized image, we can construct a training image 
set x1, x2,...,xn, with n random variables which are 
assumed to be the linear combination of m unknown 
independent components s, denoted by s1, s2,...,sm 
converted into vectors and denoted as x = (x1, 
x2,...,xn)T and s = (s1, s2,...,sn)T. From this 
relationship, each image xi is represented as a linear 
combination of s1, s2,...,sm with weighting 
coefficients ai1, ai2,...,aim, related to the matrix A. 
When ICA is applied to extract image features, the 
columns of Atrain are features, and the coefficients s 
signal the presence and the amplitude of the i-th 
feature in the observed data xtrain(Fan et al., 2002). 
Futhermore, the mixing matrix Atrain can be 
considered as features of all training images (Yuen 
and Lai, 2002). Accordingly, xtest  must be multiplied 
by the vector s for the characteristics Atest as: 

Atest= xtest s
− 1

 (6) 

Finally, this matrix contains the main feature 
vectors of the image under test, which is the input to 
the classifier, as Figure 1 illustrates. 

There are several algorithms that perform ICA 
and they are named FastICA (Hyvärinen et al., 
2001), Jade (Cardoso, 1989), ProDenICA (Hastie 
and Tibshirani, 2003), orInfomax (Bell and 
Sejnowski, 1995), KernelICA (Bach and Jordan, 
2002). Here, we perform ICA by applying FastICA 
because it is simple and allows program code 
modification and maintenance. 

Figure 1: Steps of the classification process. 

2.2 Proposed Technique 

The proposed technique consists in arranging the 
vectorized images such that pixel intensities are 
ordered (this does not modify the intensity 
distribution and Probability Density Function of 
image pixels under study). As our results reveal, it 
improves the ICA estimation, thus providing better 
representation of images that have undergone 
rotations. 

The ordering procedure is accomplished by 
multiplying input vector x by a matrix, hereafter 
referred as λ, which is unique for each sample image 

and is responsible for ordering the vector. 
Combining this procedure with Eq. (1), it can be 
written as 

λx= λAs= xorder= B sorder  (7) 

Eq. (6) shows that the ICA model for the ordered 
input vector remains valid. 

The matrix here proposed is not a permutation 
matrix used in basic linear algebra to permute rows 
or columns of a matrix, but it is actually n x n matrix 
able to reorder the elements of n-size vector, and 
assumes the following form: 
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(8) 

There is only one non-zero column, whose 
elements can be obtained from the following 
pseudo-code: 

x = INPUT;//waits for the input image vector 
maxValue=MAX(x);//finds the maximum of input vector, x 
maxIndex=FIND(maxValue,x);// returns index 
λ = ZEROS(SIZE(x),SIZE(x));//initialization as zero-matrix 
count = 1; 
maxCounter = SIZE(x); 
REPEAT 
 minValue=MIN(x);//finds the minimum of input 
              vector, x 
 minIndex=FIND(minValue,minValue);//returns index 
 λ(count,maxIndex) = minValue/maxValue;//fills matrix 
 CLEAR x(minIndex);//eliminates minIndex-th element  

UNTIL count = maxCounter 

As results will reveal, the adoption of the 
ordering preprocessing leads to improvement in 
classification accuracy, which will be associated 
later to the non-gaussianity of the data in the ICA 
model. 

2.3 Classification 

Classification is the final stage of any image 
processing system where each unknown pattern is 
assigned to a category. The degree of difficulty in a 
classification problem depends on the variability of 
feature values that characterize objects belonging to 
a same category with regard to differences between 
feature values of objects belonging to different 
categories (Mercimek et al., 2005). In this paper, we 
use the k-Nearest Neighbor classifier (k-NN) for 
supervised pattern recognition, a classical technique 
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proposed by (Cover, 1968) as a reference method to 
evaluate the performance of more sophisticated 
techniques (Coomans and Massart, 1981). 

Our main purpose is to investigate the effect of 
the ordering preprocessing on the ICA estimation. 
Thus, the comparison among several classifiers is 
out of the scope of this paper. 

3 DATASETS 

The performance evaluation of the ordering 
procedure of a ICA-based classification system has 
been done in a very straightforward manner. It 
simply compares the classifier accuracy obtained 
when the input vectors are ordered (to some extent) 
to the case when they are not. This is done for 
different image sets, described in the following. 

 

Figure 2: Examples of 1024 x 1024 images from Dataset A. 

3.1 Datasets A and B (Small Database) 

The first dataset used in this experiment includes 12 
images of 1024 × 1024 pixels and 7 images of 512 × 
512 pixels, acquired from the database of the Ming 
Hsieh Department of Electrical Engineering of the 
University of Southern California.  

Each image was rotated 1° step from 0° to 360°, 
thus forming 361 samples for every image. Those 
corresponding to 0° were used for training and the 
others used for testing. Figure 2 shows some image 
samples of dataset A. 

3.2 Dataset C (Low-resolution Images) 

In order to evaluate the proposed method and extend 
conclusions for industrial-like applications, thus 
broadening the range of interested readers, we 
performed tests on an additional dataset. In this 
experiment, tests were carried out on images 
extracted from the 3D sensor effector pmd E3D200, 
from ifm electronic ®, which is a low-resolution 
time-of-flight 50 × 64 pixels sensor. 

Another purpose of this experiment is to prospect 
real-time implementation of all-industrial image 
classification systems using ICA-based description. 
Dataset C contains pictures of three small packages, 
just different in size, which were acquired after 
randomly rotating the packages on a conveyor belt. 
This was done in a bad illuminated scenario, as it 
can be seen in the poor quality of images in Figure 3 
below.  

It is worth emphasizing that this experiment was 
performed on three image classes. The number of 
prototypes per class is 6, each one referred to a side 
of every box, in such a way that the database 
available for training contains 18 images. 

 

Figure 3: 50 x 64 pixels pictures of three packages with 
dimensions 15×10.5×7.2 cm, 15×14×6 cm and 
21.5×16.2×9.6 cm, respectively. 

3.3 Dataset D (Large-Size Database) 

To further evaluate the performance of the proposed 
method for large datasets, another experiment was 
necessary, this time having 77 images. To create this 
database, other 58 textures images acquired from the 
database of the Ming Hsieh Department of Electrical 
Engineering of the University of Southern California 
were resized and added to datasets A and B. 

Each image was rotated with 5° step, from 0° to 
360°, thus forming 73 samples for every image. 
Again, those corresponding to 0° have been used for 
training, and the others, for testing. 

3.4 Dataset E (Brodatz Database) 

Finally, we considered using a texture database 
having very different background intensities. The 
Brodatz album available in (Safia, 2013) has 112 
texture images, which have been resized from 640 x 
640 to 128 x 128 pixels. 

Here again we rotated images with 5° step, from 
0° to 360°, thus forming 73 samples for every 
image. Once more, those corresponding to 0° have 
been used for training, and the others, for testing.  

Table 1 exhibits, for each dataset, information 
about the experiments. The classifier has been 
trained and tested 50 times for each dataset. 
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Table 1: Parameters for every experiment done. 

Image set 
(pixels) 

Number of 
Coefficients 

Samples of 
Training 

Samples of 
Testing 

Set A 
(1024×1024) 

12 12 4320 

Set B (512×512) 7 7 2520

Set C (50×64) 18 18 150

Set D (128×128) 77 77 5544

Set E (128×128) 112 112 8064

4 RESULTS 

Figure 4 displays the mean recognition rates for the 
experiments using the proposed ordering method. 
Limits of x-axis indicate ranging from non-ordering 
(hence, traditional ICA approach) to full-ordering. 
Ordering rate appearing in x-axis indicates the 
amount of elements of a given input vector 
undergoing the ordering transformation λ.  

This result is impressive because it shows that 
our approach shifts the performance of the ICA-
based classification system from as low as 5% to 
near 100% after the full-ordering of the input 
vectors.  

A less remarkable but not a negligible result has 
been obtained with the low-resolution dataset C, 
which showed an increasing performance on the 
recognition rates from 70.00% to about 93.33% after 
the ordering transformation.  

Overall, clearly an ascendant trend comes out 
from this analysis, i.e., ordering images has the 
positive effect of making the classification accuracy 
higher. 

 
Figure 4: Mean recognition rates obtained for 
classification experiments with the various datasets. 

We associate the above effect on the results with 
the increase of non-gaussianity in the data, leading 
to better ICA representation. We explain that on the 
basis of the improved non-gaussianity achieved on 

the independent components when ordering 
transformation is applied and when it is omitted. 

Indeed, as explained in section 4.2 of (Hyvärinen 
et al., 2001), the estimation of the independent 
components of the ICA model relies on the 
maximization of non-gaussianity of a linear 
transformation of the observed data, x. If the data is 
presented in such a way to increase non-gaussianity 
a priori, the esimation of the ICA model is favoured. 
That is our claiming. 

In order to provide support for this claiming, we 
proceeded to measure the non-gaussianity for the 
datasets D and E, only. Since the transformation λ 
changes the way the input data is presented to the 
ICA algorithm, thus modifying the ICs, one should 
verify changes in the non-ordered case as compared 
to the full-ordering scenario.  

One should also compare the independent 
components provided by the ICA representation in 
both scenarios. We emphasize that the next results 
will not consider partial ordering scenario, as in 
Figure 4, but only null or full-ordering instead. 

Entropy is calculated by performing 150 rounds 
to extract and provide average values. This is due to 
the random initialization of the mixing matrix A as 
calculated from the FastICA algorithm.  

By following this procedure, the algorithm 
prevents the calculated non-gaussianity to be 
dependent on any initial condition. Figures 5 and 6 
summarize the non-gaussianity measurements for 
datasets D and E, respectively. 

Figures 5a and 6a show that the non-gaussianity 
increases in the whitened data after full-ordering (to 
see this, note that the lower the entropy, the lower 
the gaussianity. The scenario of this augmented non-
gaussianity also occurred in the calculated ICs. 
Figures 5b and 6b display this trend. 

 

Figure 5: Entropy of the variables for set D: a) whitened z 
(asterisk) and zorder (diamond); b) independent components 
s (asterisk) and sorder (diamond). 
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Figure 6: Entropy of the variables for set E: a) whitened z 
(asterisk) and zorder (diamond); b) independent components 
s (asterisk) and sorder (diamond). 

Altogether, Figures 5 and 6 reveal a separation 
between diamonds (ordered case) and asterisks (non-
ordered case), pretty like a “frontier”, which is more 
evident for the datasets A and B (not shown here for 
brevity). 

4 CONCLUSIONS 

In this paper, a preprocess for extracting rotation-
invariant features using independent component 
analysis is proposed. Although ICA can be directly 
used for feature extraction, it often requires data 
preprocessing. Thus, our approach may be thought 
as a preprocessing, in which the input data undergo 
full or partial ordering. Experiments performed on 
four different image datasets showed how the 
ordering transformation improved the representation 
of feature vectors, which are inputs to the classifier, 
i.e., the mixing matrix of the ICA model. 

Tests were carried out on rotated images to 
evaluate the efficiency of the method. The increased 
classification accuracy rate ranging from 5% to near 
100% (in high-resolution images) and from 70.00% 
to 93.33% (in low-resolution images) suggests the 
use of the proposed technique as a useful input data 
preprocessing. The entropy and kurtosis measures 
confirmed that the increased non-gaussianity of the 
estimated independent components improved the 
representation of the feature vectors provided by the 
ICA model. 

Summing up, although the ordering of pixels of 
an image does not affect its histogram, we showed 
that it is helpful in making the feature extraction 
from ICA a good alternative for rotation-invariant 
image recognition. As a future work, other 
approaches for rotation-invariant feature descriptors 

will be studied and compared to the alternative here 
discussed. 
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