Use este identificador para citar ou linkar para este item:
http://repositorio.ufc.br/handle/riufc/70631
Tipo: | Artigo de Evento |
Título: | Geometrical and statistical feature extraction of images for rotation invariant classification systems based on industrial devices |
Autor(es): | Silva, Rodrigo Dalvit Carvalho da Thé, George André Pereira Medeiros, Fátima Nelsizeuma Sombra de |
Palavras-chave: | Invariant moments;Independent component analysis;Support vector machine;Multi-layer perceptron |
Data do documento: | 2015 |
Instituição/Editor/Publicador: | International Conference on Automation and Computing |
Citação: | SILVA, R. D. C.; THÉ, G. A. P.; MEDEIROS, F. N. S. Geometrical and statistical feature extraction of images for rotation invariant classification systems based on industrial devices. In: INTERNATIONAL CONFERENCE ON AUTOMATION AND COMPUTING, 21., 2015, Glasgow. Anais... Glasgow: IEEE, 2015. p. 1-6. |
Abstract: | In this work, the problem of recognition of objects using images extracted from a 3D industrial sensor is discussed. We focus in 7 feature extractors based on invariant moments and 2 based on independent component analysis, as well as on 3 classifiers (k-Nearest Neighbor, Support Vector Machine and Artificial Neural Network-Multi-Layer Perceptron). To choose the best feature extractor, their performance was compared in terms of classification accuracy rate and extraction time by the k-nearest neighbors classifier using euclidean distance. For what concerns the feature extraction, descriptors based on sorted-Independent Component Analysis and on Zernike moments performed better, leading to accuracy rates over 90.00 % and requiring relatively low time feature extraction (about half-second), whereas among the different classifiers used in the experiments, the suport vector machine outperformed when the Zernike moments were adopted as feature descriptor. |
URI: | http://www.repositorio.ufc.br/handle/riufc/70631 |
Aparece nas coleções: | DETE - Trabalhos apresentados em eventos |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
2015_eve_gapthe.pdf | 477,97 kB | Adobe PDF | Visualizar/Abrir |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.