Use este identificador para citar ou linkar para este item:
http://repositorio.ufc.br/handle/riufc/70631
Registro completo de metadados
Campo DC | Valor | Idioma |
---|---|---|
dc.contributor.author | Silva, Rodrigo Dalvit Carvalho da | - |
dc.contributor.author | Thé, George André Pereira | - |
dc.contributor.author | Medeiros, Fátima Nelsizeuma Sombra de | - |
dc.date.accessioned | 2023-02-08T18:42:13Z | - |
dc.date.available | 2023-02-08T18:42:13Z | - |
dc.date.issued | 2015 | - |
dc.identifier.citation | SILVA, R. D. C.; THÉ, G. A. P.; MEDEIROS, F. N. S. Geometrical and statistical feature extraction of images for rotation invariant classification systems based on industrial devices. In: INTERNATIONAL CONFERENCE ON AUTOMATION AND COMPUTING, 21., 2015, Glasgow. Anais... Glasgow: IEEE, 2015. p. 1-6. | pt_BR |
dc.identifier.uri | http://www.repositorio.ufc.br/handle/riufc/70631 | - |
dc.description.abstract | In this work, the problem of recognition of objects using images extracted from a 3D industrial sensor is discussed. We focus in 7 feature extractors based on invariant moments and 2 based on independent component analysis, as well as on 3 classifiers (k-Nearest Neighbor, Support Vector Machine and Artificial Neural Network-Multi-Layer Perceptron). To choose the best feature extractor, their performance was compared in terms of classification accuracy rate and extraction time by the k-nearest neighbors classifier using euclidean distance. For what concerns the feature extraction, descriptors based on sorted-Independent Component Analysis and on Zernike moments performed better, leading to accuracy rates over 90.00 % and requiring relatively low time feature extraction (about half-second), whereas among the different classifiers used in the experiments, the suport vector machine outperformed when the Zernike moments were adopted as feature descriptor. | pt_BR |
dc.language.iso | en | pt_BR |
dc.publisher | International Conference on Automation and Computing | pt_BR |
dc.subject | Invariant moments | pt_BR |
dc.subject | Independent component analysis | pt_BR |
dc.subject | Support vector machine | pt_BR |
dc.subject | Multi-layer perceptron | pt_BR |
dc.title | Geometrical and statistical feature extraction of images for rotation invariant classification systems based on industrial devices | pt_BR |
dc.type | Artigo de Evento | pt_BR |
Aparece nas coleções: | DETE - Trabalhos apresentados em eventos |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
2015_eve_gapthe.pdf | 477,97 kB | Adobe PDF | Visualizar/Abrir |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.