Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/70631
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorSilva, Rodrigo Dalvit Carvalho da-
dc.contributor.authorThé, George André Pereira-
dc.contributor.authorMedeiros, Fátima Nelsizeuma Sombra de-
dc.date.accessioned2023-02-08T18:42:13Z-
dc.date.available2023-02-08T18:42:13Z-
dc.date.issued2015-
dc.identifier.citationSILVA, R. D. C.; THÉ, G. A. P.; MEDEIROS, F. N. S. Geometrical and statistical feature extraction of images for rotation invariant classification systems based on industrial devices. In: INTERNATIONAL CONFERENCE ON AUTOMATION AND COMPUTING, 21., 2015, Glasgow. Anais... Glasgow: IEEE, 2015. p. 1-6.pt_BR
dc.identifier.urihttp://www.repositorio.ufc.br/handle/riufc/70631-
dc.description.abstractIn this work, the problem of recognition of objects using images extracted from a 3D industrial sensor is discussed. We focus in 7 feature extractors based on invariant moments and 2 based on independent component analysis, as well as on 3 classifiers (k-Nearest Neighbor, Support Vector Machine and Artificial Neural Network-Multi-Layer Perceptron). To choose the best feature extractor, their performance was compared in terms of classification accuracy rate and extraction time by the k-nearest neighbors classifier using euclidean distance. For what concerns the feature extraction, descriptors based on sorted-Independent Component Analysis and on Zernike moments performed better, leading to accuracy rates over 90.00 % and requiring relatively low time feature extraction (about half-second), whereas among the different classifiers used in the experiments, the suport vector machine outperformed when the Zernike moments were adopted as feature descriptor.pt_BR
dc.language.isoenpt_BR
dc.publisherInternational Conference on Automation and Computingpt_BR
dc.subjectInvariant momentspt_BR
dc.subjectIndependent component analysispt_BR
dc.subjectSupport vector machinept_BR
dc.subjectMulti-layer perceptronpt_BR
dc.titleGeometrical and statistical feature extraction of images for rotation invariant classification systems based on industrial devicespt_BR
dc.typeArtigo de Eventopt_BR
Aparece nas coleções:DETE - Trabalhos apresentados em eventos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2015_eve_gapthe.pdf477,97 kBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.