Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.ufc.br/handle/riufc/69733
Tipo: Artigo de Evento
Título : Adaptive modulation and coding based on reinforcement learning for 5G networks
Autor : Mota, Mateus Pontes
Araújo, Daniel Costa
Costa Neto, Francisco Hugo
Almeida, André Lima Férrer de
Cavalcanti, Francisco Rodrigo Porto
Palabras clave : Reinforcement learning;Adaptive modulation and coding;Link adaptation;Machine learning;Q-Learning;Inteligência artificial
Fecha de publicación : 2019
Editorial : Globecom Workshops
Citación : CAVALCANTI, F. R. P. et al. Adaptive modulation and coding based on reinforcement learning for 5G networks. In: GLOBECOM WORKSHOPS, 2019, Waikoloa. Anais... Waikoloa: IEEE, 2019. p. 1-6.
Abstract: We design a self-exploratory reinforcement learning (RL) framework, based on the Q-learning algorithm, that enables the base station (BS) to choose a suitable modulation and coding scheme (MCS) that maximizes the spectral efficiency while maintaining a low block error rate (BLER). In this framework, the BS chooses the MCS based on the channel quality indicator (CQI) reported by the user equipment (UE). A transmission is made with the chosen MCS and the results of this transmission are converted by the BS into rewards that the BS uses to learn the suitable mapping from CQI to MCS. Comparing with a conventional fixed look-up table and the outer loop link adaptation, the proposed framework achieves superior performance in terms of spectral efficiency and BLER.
URI : http://www.repositorio.ufc.br/handle/riufc/69733
Aparece en las colecciones: DETE - Trabalhos apresentados em eventos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
2019_eve_frpcavalcanti.pdf181,36 kBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.