Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/69550
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorSouza, Darielson Araújo de-
dc.contributor.authorBatista, Josias Guimarães-
dc.contributor.authorVasconcelos, Felipe José de Sousa-
dc.contributor.authorReis, Laurinda Lúcia Nogueira dos-
dc.contributor.authorMachado, Gabriel Freitas-
dc.contributor.authorCosta, Jonatha Rodrigues da-
dc.contributor.authorNascimento Júnior, José Nogueira do-
dc.contributor.authorSilva, José Leonardo Nunes da-
dc.contributor.authorRios, Clauson Sales do Nascimento-
dc.contributor.authorSouza Júnior, Antônio Barbosa de-
dc.date.accessioned2022-11-25T15:53:03Z-
dc.date.available2022-11-25T15:53:03Z-
dc.date.issued2021-
dc.identifier.citationREIS, L. L. N. et al. Identification by recursive least squares with kalman filter (RLS-KF) applied to a robotic manipulator. IEEE Acess, [s.l], v. 9, p. 63779-63789, 2021. DOI: 10.1109/ACCESS.2021.3074419pt_BR
dc.identifier.issn2169-3536-
dc.identifier.urihttp://www.repositorio.ufc.br/handle/riufc/69550-
dc.description.abstractThe field of robotics has grown a lot over the years due to the increasing necessity of industrial production and the search for quality of industrialized products. The identification of a system requires that the model output be as close as possible to the real one, in order to improve the control system. Some hybrid identification methods can improve model estimation through computational intelligence techniques, mainly improving the limitations of a given linear technique. This paper presents as a main contribution a hybrid algorithm for the identification of industrial robotic manipulators based on the recursive least square (RLS) method, which has its matrix of regressors and vector of parameters optimized via the Kalman filter (KF) method (RLS-KF). It is also possible to highlight other contributions, which are the identification of a robotic joint driven by a three-phase induction motor, the comparison of the RLS-KF algorithm with RLS and extended recursive least square (ERLS) and the generation of the transfer function by each method. The results are compared with the well-known recursive least squares and extended recursive least squares considering the criteria of adjustable coefficient of determination ( R a 2 ) and computational cost. The RLS-KF showed better results compared to the other two algorithms (RLS and ERLS). All methods have generated their respective transfer functions.pt_BR
dc.language.isoenpt_BR
dc.publisherIEEE Acesspt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectKalman filterpt_BR
dc.subjectRecursive least squarespt_BR
dc.subjectOptimizationpt_BR
dc.subjectSystems identificationpt_BR
dc.subjectRLS-KFpt_BR
dc.titleIdentification by recursive least squares with kalman filter (RLS-KF) applied to a robotic manipulatorpt_BR
dc.typeArtigo de Periódicopt_BR
Aparece nas coleções:DEEL - Artigos publicados em revista científica

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2021_art_llnreis.pdf1,56 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.