Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.ufc.br/handle/riufc/69499
Tipo: Artigo de Evento
Título : On the characterization, generation, and efficient estimation of the complex multivariate GGD
Autor : Mowakeaa, Rami
Boukouvalas, Zois
Adalı, Tülay
Cavalcante, Charles Casimiro
Fecha de publicación : 2016
Editorial : Sensor Array and Multichannel Signal Processing Workshop
Citación : CAVALCANTE, C. C. et al. On the characterization, generation, and efficient estimation of the complex multivariate GGD. In: SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP, 2016, Rio de Janeiro. Anais... Rio de Janeiro: IEEE, 2016. p. 1-5.
Abstract: The complex multivariate generalized Gaussian distribution (CMGGD) is a flexible parametrized distribution suitable for a variety of applications. Previous work in this area is either limited to the univariate case or, in the multivariate case, restricts the complex vectors, unjustifiably, to be circular. In both cases, algorithms for parameter estimation also suffer from convergence or accuracy limitations over the complete range of their parameters. In this work, we develop the probability density function (PDF) for CMGGD that properly describes noncircular complex data. We then develop a fixed-point algorithm for the estimation of parameters of the CMGGD that is both rapid in its convergence and accurate for the complete shape parameter range. We quantify performance against other algorithms while varying noncircularity, shape parameter and data dimensionality and demonstrate robustness and gains in performance, especially for noncircular data.
URI : http://www.repositorio.ufc.br/handle/riufc/69499
Aparece en las colecciones: DETE - Trabalhos apresentados em eventos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
2016_eve_cccavalcante.pdf561,21 kBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.