Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.ufc.br/handle/riufc/69468
Tipo: Artigo de Periódico
Título : Dynamic model and inverse kinematic identification of a 3-DOF manipulator using RLSPSO
Autor : Batista, Josias Guimarães
Souza, Darielson Araújo de
Reis, Laurinda Lúcia Nogueira dos
Souza Júnior, Antônio Barbosa de
Araújo, Rui
Palabras clave : Least squares;Recursive least squares;Inverse kinematics;Dynamic model;Improved RLS with PSO
Fecha de publicación : 2020
Editorial : Sensors
Citación : REIS, L. et al. Dynamic model and inverse kinematic identification of a 3-DOF manipulator using RLSPSO. Sensors, [s.l], v. 20, n. 2, 2020. DOI: https://doi.org/10.3390/s20020416
Abstract: This paper presents the identification of the inverse kinematics of a cylindrical manipulator using identification techniques of Least Squares (LS), Recursive Least Square (RLS), and a dynamic parameter identification algorithm based on Particle Swarm Optimization (PSO) with search space defined by RLS (RLSPSO). A helical trajectory in the cartesian space is used as input. The dynamic model is found through the Lagrange equation and the motion equations, which are used to calculate the torque values of each joint. The torques are calculated from the values of the inverse kinematics, identified by each algorithm and from the manipulator joint speeds and accelerations. The results obtained for the trajectories, speeds, accelerations, and torques of each joint are compared for each algorithm. The computational costs as well as the Multi-Correlation Coefficient ( R2 ) are computed. The results demonstrated that the identification accuracy of RLSPSO is better than that of LS and PSO. This paper brings an improvement in RLS because it is a method with high complexity, so the proposed method (hybrid) aims to improve the computational cost and the results of the classic RLS.
URI : http://www.repositorio.ufc.br/handle/riufc/69468
ISSN : 1424-8220
Derechos de acceso: Acesso Aberto
Aparece en las colecciones: DEEL - Artigos publicados em revista científica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
2020_art_llnreis.pdf2 MBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.