Please use this identifier to cite or link to this item: http://repositorio.ufc.br/handle/riufc/69388
Type: Artigo de Periódico
Title: Integrated UPLC-HRMS, chemometric tools, and metabolomic analysis of forage palm (Opuntia spp. and Nopalea spp.) to define biomarkers associated with non-susceptibility to Carmine Cochineal (Dactylopius opuntiae)
Authors: Matos, Thiago Kelvin Brito
Guedes, Jhonyson Arruda Carvalho
Alves Filho, Elenilson de Godoy
Luz, Licia dos Reis
Lopes, Gisele Simone
Nascimento, Ronaldo Ferreira do
Sousa, João Antônio Costa de
Canuto, Kirley Marques
Brito, Edy Sousa de
Dias-Pini, Nivia da Silva
Zocolo, Guilherme Julião
Keywords: Cactaceae;Dactylopius opuntiae;UPLC-QTOF-MSE;Chemometrics
Issue Date: 2021
Publisher: Journal of the Brazilian Chemical Society
Citation: NASCIMENTO, R. F. et al. Integrated UPLC-HRMS, chemometric tools, and metabolomic analysis of forage palm (Opuntia spp. and Nopalea spp.) to define biomarkers associated with non-susceptibility to Carmine Cochineal (Dactylopius opuntiae). Journal of the Brazilian Chemical Society, [s.l.], v. 32, n. 8, p. 1617-1627, 2021. DOI: https://dx.doi.org/10.21577/0103-5053.20210060
Abstract: Metabolomics, together with analytical methods and chemometric tools, point to new paths for selecting species that are resistant to pests and diseases. In this work, the forage palm species’ metabolomic profile was investigated, and the relation between the chemical composition and resistance to Dactylopius opuntiae (carmine cochineal). The study was performed in cladodes of different non-susceptible cultivars (Nopalea cochenillifera (L.) Salm-Dyck, Opuntia stricta (Haw.), Nopalea cochenillifera and susceptible cultivar (Opuntia ficus-indica (L.) Mill.)). Metabolic profile showed 28 metabolites detected in the four species. From these total, 18 metabolites were annotated using UPLC-QTOF-MSE (ultra-performance liquid chromatography coupled with an electrospray ionization quadrupole time-of-flight mass spectrometry operating in MSE mode). By comparing the chemical profiles of non-susceptible and susceptible species through the application of chemometric tools, it was possible to obtain biomarkers (quercetin-3-O-2’,6’-dirhamnosylglucoside, quercetin rhamnosyl dihexoside, and isorhamnetin-3-sophoroside-7-rhamnoside) that may be associated with resistance to carmine cochineal. Metabolomics based on UPLC-QTOF-MSE and chemometric allowed to establish the biomarkers knowledge of the resistance present in forage palm species. These results contribute to developing the initial understanding of flavonoids’ role in the defense mechanisms of cactaceans and can be useful for application in breeding programs; it can increase the chances of success in creating new varieties of plants not susceptible to carmine cochineal.
URI: http://www.repositorio.ufc.br/handle/riufc/69388
ISSN: 0103-5053
Access Rights: Acesso Aberto
Appears in Collections:DEHA - Artigos publicados em revista científica

Files in This Item:
File Description SizeFormat 
2021_art_rfnascimento.pdf1,11 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.