Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.ufc.br/handle/riufc/68299
Tipo: Artigo de Periódico
Título : A hybrid genetic algorithm for the hybrid flow shop scheduling problem with machine blocking and sequence-dependent setup times
Autor : Maciel, Ingrid Simões Ferreira
Prata, Bruno de Athayde
Nagano, Marcelo Seido
Abreu, Levi Ribeiro de
Palabras clave : Production sequencing;Makespan;Evolutionary algorithms;Mixed-Integer linear programming
Fecha de publicación : 2022
Editorial : Journal of Project Management
Citación : PRATA, B. A. et al. A hybrid genetic algorithm for the hybrid flow shop scheduling problem with machine blocking and sequence-dependent setup times. Journal of Project Management, vol. 7, n. 4, p. 201-216, 2022. DOI: 10.5267/j.jpm.2022.5.002
Abstract: This study contributes to the hybrid flow shop due to a lack of consideration of characteristics existing in real-world problems. Prior studies are neglecting identical machines, explicit and sequence-dependent setup times, and machine blocking. We propose a hybrid genetic algorithm to solve the problem. Furthermore, we also propose a mixed-integer linear programming formulation. We note a predominance of the mathematical model for small instances, with five jobs and three machines because of how fast there is convergence. The objective function adopted is to minimize the makespan, and relative deviation is used as a performance criterion. Our proposal incorporates two metaheuristics in this process: a genetic algorithm to generate sequences (the flow shop subproblem) and a GRASP to allocate the jobs in the machines (the parallel machines subproblem). The extensive computational experience carried out shows that the proposed hybrid genetic algorithm is a promising procedure to solve large-sized instances.
URI : http://www.repositorio.ufc.br/handle/riufc/68299
ISSN : 2371-8374
Aparece en las colecciones: DEPR - Artigos publicados em revistas científicas

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
2022_art_batprata.pdf1,19 MBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.