Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.ufc.br/handle/riufc/66327
Tipo: Artigo de Periódico
Título : Evaluation of principal component analysis and neural network performance for bearing fault diagnosis from vibration signal processed by RS and DF analyses
Autor : Moura, Elineudo Pinho de
Souto, Cícero da Rocha
Silva, Antônio Almeida
Irmão, Marcos Antônio da Silva
Palabras clave : Bearing;Fault diagnosis;Vibration analysis;Hurst analysis;Detrended-fluctuation analysis;Pattern recognition
Fecha de publicación : 2011
Editorial : Mechanical Systems and Signal Processing
Citación : MOURA, E.P. de et al. Evaluation of principal component analysis and neural network performance for bearing fault diagnosis from vibration signal processed by RS and DF analyses. Mechanical Systems and Signal Processing, [s.l.], v. 25, n. 5, p. 1765-1772, 2011.
Abstract: In this work, signal processing and pattern recognition techniques are combined to diagnose the severity of bearing faults. The signals were pre-processed by detrendedfluctuation analysis (DFA) and rescaled-range analysis (RSA) techniques and investigated by neural networks and principal components analysis in a total of four schemes. Three different levels of bearing fault severities together with a standard no-fault class were studied and compared. Signals were acquired from bearings working under different frequency and load conditions. An evaluation of fault recognition efficiency was performed for each combination of signal processing and pattern recognition techniques All four schemes of classification yielded reasonably good results and are thus shown to be promising for rolling bearing fault monitoring and diagnosing.
URI : http://www.repositorio.ufc.br/handle/riufc/66327
ISSN : 0888-3270
Aparece en las colecciones: DEMM - Artigos publicados em revista científica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
2011_art_epmoura.pdf253,21 kBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.