Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/66314
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorGuedes, Kevin Santos-
dc.contributor.authorAndrade, Carla Freitas de-
dc.contributor.authorRocha, Paulo Alexandre Costa-
dc.contributor.authorMangueira, Rivanilso dos Santos-
dc.contributor.authorMoura, Elineudo Pinho de-
dc.date.accessioned2022-06-09T13:22:35Z-
dc.date.available2022-06-09T13:22:35Z-
dc.date.issued2020-
dc.identifier.citationGUEDES, Kevin S. et al. Performance analysis of metaheuristic optimization algorithms in estimating the parameters of several wind speed distributions. Applied Energy, [s.l.], v. 268, n. 114952, p. 2020.pt_BR
dc.identifier.issn1872-9118-
dc.identifier.urihttp://www.repositorio.ufc.br/handle/riufc/66314-
dc.description.abstractFor a better use of wind energy, the accurate selection of the wind speed distributions that best represents the regarding wind regime’s characteristics is essential. The Weibull distribution is the most common, but this model is not always the most suitable. Therefore, in order to obtain more reliable information, the evaluation of different distributions becomes necessary. Another crucial step is the estimation of the parameters that govern these distributions because the accuracy of these estimates directly affects the energy generation calculations. In the last few years, different optimization methods have been used for this purpose. However, the applications of these methods are focused on conventional two-parameter distributions, such as Weibull and Lognormal. Futhermore, different authors report that there is a lack of studies that use optimization methods for this purpose. In this paper, four metaheuristic optimization algorithms (MOA)—namely, Migrating Birds Optimization (MBO), Imperialist Competitive Algorithm (ICA), Harmony Search (HS) and Cuckoo Search (CS)—are used to fit 11 distributions in two Brazillian regions. Thus, this work expands the application of the MOA to beyond the conventional distributions and applies, for the first time, the MBO and ICA in estimating the parameters of wind speed distributions, thereby introducing new ways to optimize the use of wind resources. The fits obtained by the MOA were compared with those obtained by the method Maximum Likelihood Estimation (MLE). Gamma Generalized and Extended Generalized Lindley distributions presented the best fits, and the MOA outperformed the MLE because the global score values obtained were smaller.pt_BR
dc.language.isoenpt_BR
dc.publisherApplied Energypt_BR
dc.subjectWind energypt_BR
dc.subjectWind speed modelingpt_BR
dc.subjectOptimal parameters estimationpt_BR
dc.subjectMulti-criteria statistical analysispt_BR
dc.subjectMetaheuristic optimization algorithmspt_BR
dc.subjectNon-conventional wind speed distributionspt_BR
dc.titlePerformance analysis of metaheuristic optimization algorithms in estimating the parameters of several wind speed distributionspt_BR
dc.typeArtigo de Periódicopt_BR
Aparece nas coleções:DEMM - Artigos publicados em revista científica

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2020_art_ksguedes.pdf826,31 kBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.