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H I G H L I G H T S

• 11 distributions are used to fit the wind speed data of two Brazilian regions.

• The application of optimization methods is expanded to non-conventional distributions.

• The coefficient of determination as objective function yielded better results.

• Metaheuristic optimization algorithms outperformed Maximum Likelihood method.

• Gamma Generalized and Extended Generalized Lindley distributions fitted better.
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A B S T R A C T

For a better use of wind energy, the accurate selection of the wind speed distributions that best represents the
regarding wind regime’s characteristics is essential. The Weibull distribution is the most common, but this model
is not always the most suitable. Therefore, in order to obtain more reliable information, the evaluation of dif-
ferent distributions becomes necessary. Another crucial step is the estimation of the parameters that govern these
distributions because the accuracy of these estimates directly affects the energy generation calculations. In the
last few years, different optimization methods have been used for this purpose. However, the applications of
these methods are focused on conventional two-parameter distributions, such as Weibull and Lognormal.
Futhermore, different authors report that there is a lack of studies that use optimization methods for this pur-
pose. In this paper, four metaheuristic optimization algorithms (MOA)—namely, Migrating Birds Optimization
(MBO), Imperialist Competitive Algorithm (ICA), Harmony Search (HS) and Cuckoo Search (CS)—are used to fit
11 distributions in two Brazillian regions. Thus, this work expands the application of the MOA to beyond the
conventional distributions and applies, for the first time, the MBO and ICA in estimating the parameters of wind
speed distributions, thereby introducing new ways to optimize the use of wind resources. The fits obtained by the
MOA were compared with those obtained by the method Maximum Likelihood Estimation (MLE). Gamma
Generalized and Extended Generalized Lindley distributions presented the best fits, and the MOA outperformed
the MLE because the global score values obtained were smaller.

1. Introduction

Amid growing demand for energy and the environmental impacts
caused by the use of fossil fuels, renewable sources have received
special attention as viable means of supplying this need and reducing
carbon dioxide emissions into the atmosphere and dependence on fossil
fuels. Among the various renewable sources, wind energy has

experienced the fastest development rate in many regions of the planet.
For the efficient use of wind resources in a region, the knowledge of the
wind regime characteristics is of paramount importance [1]. Among the
many factors that affect the output power of a wind turbine, wind speed
distribution is the most important [2]. If this distribution is known, then
the wind potential and the economic viability of the wind farm can be
easily calculated [3]. These distributions are also used in wind farm
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planning; in the calculation of important indicators such as average
wind power density, effective wind power density, availability factor
and capacity factor; and to reduce uncertainties linked to wind poten-
tial development [4,5].

The Weibull (W) distribution is one of the most widely used. The
ease of estimating the two parameters of this distribution, its flexibility
and its good accuracy in different regions are some of the main features
that make this distribution one of the most used [3]. However, this
distribution is not always the most suitable to describe certain wind
regimes [4].

Soukissian [6] also state that the Weibull distribution has been often
proved to be inadequate and its indiscriminate use is not justified. Amid
this scenario, the authors proposed, for the first time, the use of the

Johnson SB distribution for offshore wind speed modeling. The results
showed that the Johnson SB distribution accurately describes the em-
pirical distribution of offshore wind speed and that it has better
adaptability than the 3-parameter Weibull distribution. Zhang et al. [7]
applied the Maximum Entropy Principle to fit the annual wind speed
data collected at Rudong, in East China Sea. The Maximum Entropy
Principle performed adequately in fitting the wind speed frequency
distribution when compared to the W distribution.

In a study conducted by Masseran [8] with data collected at two
stations in Malaysia, the Gamma (G) distribution proved to be better
than the traditional W to fit the wind speed data. Wang et al. [9] also
affirm that the W distribution is not always able to represent some wind
regimes. Kantar et al. [10] compared the performance of Extended

Nomenclature

Symbols

x Wind speed data
x̄ Mean of the wind speed data
s Standard deviation of the wind speed data
k Shape parameter
c Scale parameter
p Second shape parameter
u Location parameter
n Total number of data points
f x( ) Probability density function
F x( ) Cumulative distribution function
Pw Average wind turbine power output
P x( )w Wind turbine power output as function of the wind speed
R2 Coefficient of determination
Fi Observed cumulative probabilities

̂Fi Predicted cumulative probabilities
γu Upper incomplete gamma function
γl Lower incomplete gamma function
Φ Standard normal cumulative distribution function
erf Error function
Nbirds Number of birds in the V formation
nnb Number of neighboring solutions
nun Number of unused solutions
b Bird (solution)

̂b Neighboring solution
m Number of iterations for shifting the leader bird
n i j[ , ] Random number ranging from i to j
Ncountries Number of countries
Nimp Number of imperialists
Ncol Number of colonies
TCi Total cost of the ith empire
NTCi Normalized TCi
Ppi Possession probability of the ith empire
Nh Number of harmonies
bw Bandwidth
Nnests Number of birds in the V formation
pd Probability of a cuckoo egg being detected
Levy λ́ ( ) Lévy distribution
α Constant in cuckoo search algorithm
⊕ Entrywise multiplications
L Likelihood function
np Number of parameters
g1 Empirical skewness
g2 Empirical kurtosis
γ1 Theoretical skewness
γ2 Theoretical kurtosis
wij ith value of the j criterion

w̄j Mean of of the j criterion
sj Standard deviation of the j criterion
zij Standardized score

Abbreviations

W Weibull
G Gamma
BS Birnbaum-Saunders
N Nakagami
LN Lognormal
GL Generalized Lindley
GEV Generalized Extreme Value
B Burr
D Dagum
EGL Extended generalized lindley
GG Generalized gamma
R Rayleigh
LL Loglogistic
Norm Normal
RMSE Root mean square error
NRMSE Normalized RMSE
SCR-25 Station in São João do Cariri
PTR-11 Station in Petrolina
MOA Metaheuristic optimization algorithms
MBO Migrating birds optimization
ICA Imperialist competitive algorithm
HS Harmony Search
CS Cuckoo Search
PSO Particle swarm optimization
ACA Ant colony algorithm
MLE Maximum likelihood estimation
MMLE Modified MLE
MM Method of moments
LSM Least squares method
EM Empirical method
EPF Energy pattern factor method
GM Graphical method
NM Numerical methods
SONDA Sistema de Organização Nacional de Dados Ambientais

(National Organization System of Environmental Data)
HMCR Harmony Memory Considering Rate
PAR Pitch adjusting rate
AIC Akaike information criterion
DSK Deviation of skewness and kurtosis
KS Kolgomorov-Smirnov test
SNCDFT Standard normal cumulative distribution function trans-

formation
GS Global Score
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Generalized Lindley (EGL) distribution with that of W, Rayleigh (R),
Lognormal (LN) and G distributions in different regions of Turkey.
Their results show that the EGL presented the best accuracy in most of
the examined regions. Similar studies have been conducted by Mo-
hammadi et al. [5], Alavi et al. [11] and Arslan et al. [12], demon-
strating the good performance, respectively, of the Birnbaum-Saunders
(BS), Nakagami (N) and Generalized Lindley (GL) distributions when
fitting the wind speed data of different regions. To reduce uncertainties
linked to wind resource estimates, Aries et al. [1] analyzed the accuracy
of eight probability distributions in the modeling of wind speed in four
regions of Algeria. According to their statistical tests, Coefficient of
Determination and Root Mean Square Error, Gamma (G) and General-
ized Extreme Value (GEV) distributions performed better. In a study
conducted by Brano et al. [13] in southern Italy, the three-parameter
distribution Burr was found to be the most accurate when compared to
the W, R, G, LN, Inverse Gaussian and Pearson Type V distributions.
Jung and Schindler [14] evaluated the performance of 24 one-compo-
nent distribution models and 24 mixed-distribution models in a study
conducted on a global scale and from the results it was shown that only
in a few regions did the W distribution provide the highest accuracy.
Given these facts, it is possible to see that the accuracy of a distribution
is directly related to the characteristics of the wind regime in which it
was applied, such that if a given distribution model showed good ac-
curacy in a region, then this does not mean that it will provide a good fit
in all regions. Thus, to obtain a more accurate fit, it is essential to
analyze different distribution models.

Another very important step is the correct estimation of the para-
meters governing the probability distribution functions. Although a
given distribution can accurately represent the wind regime of a region,
if its parameters are not estimated correctly, then the fit obtained will
be inaccurate and unreliable. The analysis of the wind potential of a
region and the economic viability of a project are important aspects
that depend on the good estimation of these parameters [15]. Conse-
quently, to obtain a more accurate fit, most researchers use several
methods of parameter estimation. The most commonly used methods
are: Maximum Likelihood Estimation (MLE) [16], Modified Maximum
Likelihood Estimation (MMLE) [17], Graphical Method (GM) [18],
Method of Moments (MM) [19,1], Least Squares Method (LSM) [14,20],
Empirical Method (EM) [21] and Energy Pattern Factor Method (EPF)
[22]. Such methods are classified as Numerical Methods (NM). How-
ever, there is another category, composed by Metaheuristic Optimiza-
tion Algorithms (MOA), whose application in the optimization of the
distributions unknown parameters has proven to be beneficial and
promising. In addition, many studies have shown the superior perfor-
mance of these methods when compared to the traditional NM.

Wang et al. [4] used the Particle Swarm Optimization (PSO),
Cuckoo Search (CS) and Gray Wolf Optimizer optimization methods
and the EM, EPF, and MLE numerical methods to estimate the W dis-
tribution parameters in China. Their statistical analysis demonstrated
that the fits obtained by optimization methods were usually superior to
the fits obtained by numerical methods. Jiang et al. [19] estimated the
parameters of the W, R, G and LN distributions through the optimiza-
tion methods PSO, CS and Bat Algorithm and the numerical methods
MM, MLE and LSM. Subsequently, a comparative analysis was con-
ducted and the results showed that all the optimization methods per-
formed better than the numerical methods. Wang et al. [23] used
Chaotic PSO and CS to estimate the parameters of the GEV and Gumbel
distributions in offshore extreme wind speed modeling. Both methods
presented a good performance. Wang et al. [9] used the CS to fit the W,
G, R, LN, Normal (Norm), and Loglogistic (LL) distributions in four
regions of China. Their study revealed that the CS algorithm out-
performed the widely used estimation methods. Similarly, Zhao et al.
[3] and Wang et al. [24] used the CS, Ant Colony Algorithm (ACA),
Genetic Algorithm and Firefly Algorithm to calculate the parameters of
the W distribution. Andrade et al. [25] did the same using the opti-
mization methods Harmony Search (HS), PSO, CS and ACA. Chang [26]

and Wu et al. [27] used the PSO to estimate the unknown parameters in
the W distribution.

However, from this literature review, it is possible to observe that
the optimization methods were mostly employed in more commonly
used two-parameter distributions (i.e., W, G, LN, Norm and LL). In
addition, according to Jiang et al. [19], previous studies and applica-
tions of optimization methods to estimate wind speed distribution
parameters are insufficient. Furthermore, Wang et al. [4] highlighted
the lack of studies using optimization methods to estimate the W dis-
tribution parameters.

In this paper, inspired by the scenarios presented above, six two-
parameters distributions—namely Weibull (W), Gamma (G), Birnbaum-
Saunders (BS), Nakagami (N), Lognormal (LN) and Generalized Lindley
(GL)—and five three-parameter distributions—namely Generalized
Extreme Value (GEV), Burr (B), Dagum (D), Extended Generalized
Lindley (EGL), and Generalized Gamma (GG)—were used to fit the
wind speed data of two cities in northeastern Brazil. The optimal
parameters of these distributions were estimated through four
MOA—namely, Migrating Birds Optimization (MBO), Imperialist
Competitive Algorithm (ICA), Harmony Search (HS) and Cuckoo Search
(CS). Regarding the MBO and ICA methods, no studies were found in
the literature that used these methods to fit wind speed distributions.
Consequently, this paper is the first time that these methods have been
applied for this purpose. Regarding HS, no studies were found that
analyzed its performance when fitting three-parameter distributions.

The results provided by the MOA are compared with the results
obtained by the deterministic method Maximum Likelihood Estimation
(MLE) through an integrated approach recently proposed by Masseran
[8] that considers mutually, in a single value, four statistical tests that
are commonly used in this type of study—namely, Coefficient of De-
termination (R2), Kolgomorov-Smirnov Test (KS), Akaike Information
Criterion (AIC) and Deviation of Skewness and Kurtosis (DSK)—to
evaluate the performance and applicability of the MBO and ICA
methods in the estimation of the wind speed distribution parameters, of
the HS method in fitting the three-parameter distributions, and to de-
termine the sets (distribution - parameters estimation method) that
provide a better fit.

This paper presents a new application of the MBO, ICA and HS
methods. This is the first time that MBO and ICA have been used to
determine the optimal parameters of wind speed distributions, thereby
introducing new ways to optimize the use of wind resources. This also
expands the application of MOA to beyond the conventional two-
parameter distributions, which until now were the application focus of
these methods. As mentioned before, in the studies conducted by Wang
et al. [4], Zhao et al. [3], Wang et al. [24,9], Jiang et al. [19], Chang
[26], Andrade et al. [25] and Wu et al. [27], for example, the optimi-
zation methods were all applied to estimate the unknown parameters of
two-parameter distributions.

This paper also compares the performance of the MOA with three
distinct objective functions to determine which one provides the greater
accuracy when fitting the distributions, it also presents a broad and
objective comparison of the accuracy of a specific group of eleven wind
speed distributions fitted through four MOA. Eight non-conventional
distributions (BS, N, GL, GEV, B, D, EGL and GG) and three conven-
tional (W, G and LN) are included in this group.

2. Wind speed data and site presentation

In this research, the wind speed data used were obtained at PTR-11
station, located in the city of Petrolina, and at SCR-25 station, located in
the city of São João do Cariri, both in the northeast region of Brazil. The
data were provided by the Sistema de Organização Nacional de Dados
Ambientais (SONDA - National Organization System of Environmental
Data), which is a project of the Brazilian Federal Government.
Geographic information of both regions are presented in Table 1.

The Northeast of Brazil is one of the best regions in the world for
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wind power generation thanks to the extremely favorable character-
istics of the wind regime. Consequently, 86% of Brazil’s installed wind
power capacity is located in the Northeast region. According to the
Associação Brasileira de Energia Eólica (Brazilian Wind Energy
Association) [28], during the “harvest of the wind” season, which
corresponds to the months of June to November, it is common for wind
farms in the Brazilian Northeast to reach capacity factors greater than
80%, which is a significantly higher value than the world average of
approximately 25%. During this same period in 2018, wind energy
supplied 104% of the region’s demand, with surplus energy being ex-
ported to other regions of the country. These facts, coupled with the
enormous potential that is still unexplored in this region, justify the
choice of the wind speed data from the cities of São João do Cariri and
Petrolina and they highlight the importance of this study for the de-
velopment of the wind potential in the Northeast of Brazil.

Before being made available, the wind speed data are subjected to a
validation process based on Baseline Surface Radiation Network data
quality control. This process does not correct the data but it does
generate a validation code that signals the data characterized as sus-
picious, it is at the discretion of the user to use it or not. On the selected
data, only a small percentage was characterized as suspect.

Faced with this situation, the data were subjected to a treatment
process to remove suspicious values (i.e., non-numeric, negative and
excessive values). In both regions, the percentage of utilization was
higher than 99%, which demonstrates the high reliability of the data.
Table 2 presents some basic information about the data collected by
stations SCR-25 and PTR-11. The average wind speeds of both were
measured in m/s every 10 min, at 50 m height, for one year. The time
history of wind speed and the “harvest of the wind” season for both
stations are presented in Fig. 1.

3. Wind speed distribution models

In mathematical terms, the average wind turbine power output Pw is
given by [14]:

∫=
∞

P P x f x dx( ) ( )w w0 (1)

where P x( )w is the wind turbine power output as a function of the wind
speed x and f x( ) is a probability distribution function. From Eq. (1), it
is easy to see that the incorrect selection of the most accurate f x( )
function and/or a poor parameter estimation of this distribution di-
rectly impacts the average power generated by the wind turbine, which
may compromise the wind resource analysis and the energy generation
efficiency in a given region. Garrido-Perez et al. [29], for example, used
the Weibull distribution to identify regional differences in the sites
analyzed in their study and to estimate the expected wind production.
Sedaghat et al. [30] introduced a capacity value, which represents the
annual wind energy production from a specific wind site using a certain
wind turbine. This capacity value is calculated in terms of the Weibull
distribution and power performance of variable wind speed turbines.
These studies highlight the importance and the application of an ac-
curate wind speed distribution model in analysing the wind resources.
These studies are based in the Weibull distribution, but as stated by
different author, this model is not always the most suitable.

Therefore, to ensure the selection of an accurate model, 11 prob-
ability distributions were evaluated in this research, as follows: Weibull
(W), which is one of the most widely used in wind resource modeling

and presents good performance in several regions; Gamma (G) and
Lognormal (LN), which are both also very common in wind resource
analysis; Birnbaum-Saunders (BS), Nakagami (N), Generalized Lindley
(GL) and Extended Generalized Lindley (EGL) models, whose applica-
tion in wind energy is more recent; Burr (B), Dagum (D), Generalized
Extreme Value (GEV) and Generalized Gamma (GG), which are more
flexible models and presented high performance in different regions.

The W, G, BS, N, LN and GL models have two parameters and the
GEV, B, D, EGL and GG models have three parameters. The probability
density function f x( ) and the cumulative distribution function F x( ) of
these models are presented in Table 3, where k is the shape parameter, p
is the second shape parameter, c is the scale parameter and u is the
location parameter.

4. Parameter optimization methods

The estimation and the optimization of unknown distributions
parameters is crucial to select the most suitable probability model [19].
In this study, four metaheuristic optimization algorithms (MOA) were
used—namely, Migrating Birds Optimization (MBO), Imperialist Com-
petitive Algorithm (ICA), Harmony Search (HS) and Cuckoo Search
(CS)—to determine optimal parameters and provide a more accurate fit.

These methods have been selected due to their proven and recent
performance in various scientific fields, such as nuclear energy [41],
spatial prediction of wildfire probability [42], robotics [43], image
compression [44], optimization of laminated composite structures [45],
structural damage detection [46], structural and design optimization
[47], among others. In the case of MBO and ICA, no studies were found
that used these methods to determine the optimal parameters of the
wind speed distributions. Thus, the application of these methods is
performed for the first time in this research. As for HS, its applications
were found only in the estimation of the W distribution parameters.
Finally, because according to Jiang et al. [19], only few studies have
been conducted to optimize the distribution parameters through MOA.
Thus, by selecting four MOA, this paper presents, as one more con-
tribution, a broad comparison of the MOA performance in determining
the optimal parameters of wind speed distributions, focusing not on a
small group of conventional models but on a broad group consisting of
11 distributions, most of which are non-conventional models.

MOA methods present in their structure a certain tradeoff between
randomness and local search. In addition, the main components of any
MOA are diversification and intensification (or exploration and ex-
ploitation). Diversification is the ability of the method to generate di-
verse and distinct solutions, which ensures a global search in the space
of possible solutions to the problem. In contrast, intensification is the
ability to focus on a particular region of the search space by exploiting
the information that the current best solution lies in this region. The
combination of these two components generally ensures that the global
optimum is achievable [48].

MOAs have an important information sharing-mechanism, which
under certain circumstances can accelerate the convergence of the al-
gorithm [49]. This sharing-mechanism is also one of the key features

Table 1
Geographical information (Latitude, Longitude and Altitude) of PTR-11 and
SCR-25 stations.

Site Latitude (°) Longitude (°) Altitude (m)

São João do Cariri (Station SCR-25) −7.3817 −36.5272 718
Petrolina (Station PTR-11) −9.0689 −40.3197 387

Table 2
Basic statistics, size and year of measurement of the wind speed data collected
in São João do Cariri (Station SCR-25) and Petrolina (Station PTR-11).

Station SCR-25 PTR-11

Year 2008 2010
Min (m/s) 0.002 0.008
Max (m/s) 12.98 14.30
Mean (m/s) 5.238 4.886
Standard deviation (m/s) 2.332 1.745
Skewness 0.178 0.073
Kurtosis 2.449 3.105
Size 52662 52514
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that distinguish the MOA from a simple scan of all possible solutions to
the problem. The MOA cleverly combines several concepts and simu-
lates learning strategies to find the optimal solution efficiently and in a
shorter period of time [50].

In MOA, the searching process for the optimal solution occurs
through the minimization (or maximization) of an objective function,
which is a previously defined function that is capable of numerically
representing the quality of the generated solutions. In this study, three
objective functions were used:

1. Maximization of the Coefficient of Determination (R2): This widely
used statistical test measures the correlation between the prob-
abilities observed and the probabilities predicted by the distribution
model, and it is given by [11]:
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Fig. 1. Time History of Wind Speed (m/s) in a 10 min interval between each measurement. The “Harvest of the Wind” season in both regions is also displayed.
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Probability Density Function f x( ) and Cumulative Distribution Function F x( ) of each distribution model used in this work, where k is the shape parameter, p is the
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where Fi are the predicted cumulative probabilities obtained from
cumulative distribution functions, Fi are the observed cumulative
probabilities and ̂= ∑ =F F n/i

n
i1 . The value of R2 ranges from 0 to 1,

with values close to 1 indicating a good fit. This objective function
can also be interpreted as the minimization of the value − R1 2 and
was used by Jiang et al. [19] and Wang et al. [23].

2. Minimization of the Root Mean Square Error (RMSE): The RMSE is a
measure of the accuracy of the fitted model and it is given by [5]:

̂∑= −
=

RMSE
n

F F1 ( )
i

n

i i
1

2

(3)

The lower the RMSE value, the more accurate the fit. The mini-
mization of the sum of squared errors as an objective function,
which is very similar to the minimization of the RMSE, was used by
Wang et al. [4] and Andrade et al. [25].

3. Minimization of − +R NRMSE(1 )2 : This is a hybrid objective
function formed by the sum of the two previous functions. The term
NRMSE means that the RMSE was normalized according to Eq. (4),
so that R2 and RMSE are in the same scale.

=
−

NRMSE RMSE
max F min F( ) ( ) (4)

Studies using this objective function to determine the unknown
parameters of wind speed distributions were not found in the lit-
erature.

It is important to emphasize that the results generated from the
three objective functions are not necessarily the same. Moreover, no
studies were found that compared the performance of these objective
functions in determining the optimal parameters of wind speed dis-
tributions. Therefore, once the results were obtained, a statistical ana-
lysis was conducted to determine which function was most suitable for
this study.

According to Yang [48], when there is no time limit for the opti-
mization process, it is theoretically possible for a given method to find
the global optimum. In this context, if a maximum value of iterations
were adopted as a stopping criterion, then the processing time would be
restricted and the best solution found by the methods could be a pre-
mature and poorly optimized solution. Therefore, to avoid this possi-
bility, the stopping criterion adopted in this work was the method
convergence; that is, when the best solution obtained no longer suffers
significant variations, the algorithm ceases and returns this solution.

Finally, to evaluate the performance of the MOA, the Maximum
Likelihood Estimation (MLE) was also used. This method is widely used
by many authors and it generally provides significant results, as can be
seen in the studies conducted by Kantar et al. [10], Mohammadi et al.
[5], Rocha et al. [21], Morgan et al. [40] and Jung and Schindler [51].
For a large number of samples, MLE is more efficient than other nu-
merical methods [11]. Chang [18] compared the perfomance of the
numerical methods MM, GM, EM, MLE, MMLE and EPF in estimating
the Weibull parameters. Among these methods, the MLE was the one
which perfomed better. In the study conducted by Katinas et al. [52],
the MLE was also one of the methods which performed better when
estimating the unknown parameters of the Weibull distribution.

In MLE, the model fitting is performed by identifying the parameters
that maximize the probability of obtaining the observed data [1]. This
method involves iterative processes and the simultaneous solution of
different equations, thus requiring the use of a numerical method to
obtain the result. Several different methods are used in the literature,
such as Newton–Raphson, quasi-Newton, Nelder-Mead, among others.
The Nelder-Mead method was used in this work.

The MLE is characterized as a deterministic numerical method; that
is, for the same input, the output is always the same. In contrast, the
MOA, which have in their structure random processes, have different
outputs for the same input, which makes each run of the algorithm

unique. Hence, in practice, several runs are required to obtain a good
result [53].

4.1. Migrating Birds Optimization (MBO)

Proposed by Duman et al. [54], the MBO is inspired by the V-flight
formation of migrating birds, in which the bird positioned in the front
region, called the leader, guides the flock on both lines of the formation.
Through this formation, birds receive an aerodynamic benefit from the
bird in front and spend less energy during flight, which is the reason
why birds adopt the V-flight formation. In a group of 25 birds, for ex-
ample, each bird achieves, by virtue of this aerodynamic benefit, a
flight range approximately 70% greater than that of a single bird [55].
The leader, by occupying the first position of the formation, does not
receive such benefit and, consequently, expends more energy. More
detailed and illustrated information about this method can be found in
the studies conducted by Makas and Yumusak [56], Duman et al. [54]
and Lissaman and Shollenberger [55].

The MBO simulates the benefit of energy saving by sharing solutions
and is conducted as follows [56]:

1. Initialization and random distribution of the population of Nbirds
birds (solutions) in a V formation.

2. Generation of nnb neighboring solutions for the leading bird. If one
of these new solutions is better, then it replaces the leader. The n2 un
unused solutions are shared by the next two birds in the formation.

3. Generation of −n nnb un neighboring solutions for each bird and then
combining the solutions with the nun solutions received from the
birds in the front, totaling nnb neighbors. If the neighboring solution
is better, then it replaces the bird and the nun unused solutions are
shared with the next bird.

4. Step 3 is executed until all birds are processed.
5. In this step, it is assumed that the leader bird, after m iterations,

reaches exhaustion. The leader is then shifted to the end of one of
the two lines in the V formation and the second bird of this line takes
the leader position.

6. Steps 2 to 5 are repeated until the stopping criterion is reached. The
best solution obtained is returned.

In this algorithm, the neighboring solutions are generated according
to Eq. (5), where bij is the ith solution consisting of j dimensions, being
each dimension one of the parameters of the distribution models, ̂bij are
the neighboring solutions, ∈r N[1, ]birds is an integer number other than
i randomly chosen and −n[ 1,1] is a random number ranging from−1 to 1.

̂ = + −−b b n b b·( )ij ij ij rj[ 1,1] (5)

The leader bird spends the most energy by generating nnb neighbors
in each iteration. The other birds receive the nun unused solutions from
the birds in front and generate only −n nnb un neighboring solutions,
simulating the energy saving provided by the V-formation.

4.2. Imperialist Competitive Algorithm (ICA)

The ICA was proposed by Atashpax-Gargari and Lucas [57], and is
an optimization method based on the sociopolitical process of im-
perialist competition. In this method, each country is a possible solution
for the problem and the strongest countries are those with the best
value of the objective function, also called cost in this algorithm. The
ICA is conducted as follows [57]:

1. Random generation of the initial population of Ncountries countries.
For the formation of empires, the Nimp countries with the lowest cost
(best objective function value) are designated as imperialists, and
the Ncol remaining countries (called colonies) are distributed among
the imperialists. The amount of colonies that each imperialist
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receives is proportional to their power.
2. Movement of the colonies towards their respective imperialists

(Assimilation) or in a random direction (Revolution). If one of the
colonies become more powerful (better objective function value),
then this colony becomes the imperialist of its respective empire.

3. Calculation of the total cost of all empires.
4. The weakest colony of the weakest empire is disputed among the

strongest empires, so that the strongest empire is most likely to
possess the weakest colony.

5. Elimination of the weaker empires. In this work, the elimination
occurs when an empire has no colony.

6. Steps 2 to 5 are repeated until only one empire remains, being the
last imperialist in the problem solution.

In the third step, the total cost TCi of the ith empire is given by Eq.
(6).

= +TC Cost imperialist mean Cost colonies of empire( ) (0.1)· { ( )}i i i (6)

In the fourth step, the possession probability Ppi of each empire is
calculated by Eqs. (7) and (8), where NTCi is the normalized total cost
of the ith empire.

= −NTC TC max TC( )i i (7)

∑
=

=

P NTC

NTC
p

i

n

N

n
1

i imp

(8)

For each empire, a random number n[0,1] between 0 and 1 is gen-
erated. The empire with the highest value of −P np [0,1]i receives the
colony being disputed.

4.3. Harmony Search (HS)

Initially proposed by Geem et al. [58], the HS is based on the arti-
ficial process of searching for the best consonance of musical notes by a
musical group [41]. This combination of notes is called harmony. The
search takes place through the group experience or a random process of
improvisation. The quality of the new harmony generated is determined
through an aesthetic criterion. Similarly, the HS seeks to mimic this
behavior by optimizing existing solutions and randomly generating new
solutions, adopting the value of the objective function as the quality
criterion of the solutions.

HS is conducted as follows [58]:

1. Harmony Memory (HM) initialization. HM consists of Nh randomly
generated harmonies, each one of which is a possible solution. In
this study, each musical note that composes a harmony is one of the
parameters of the wind speed distributions.

2. Improvisation of new harmonies. If the new harmony is better than
the worst harmony present in HM, then the worst one is replaced by
the new one.

3. Step 2 is repeated until the stopping criterion is reached.

In the second step, the generation of each musical note that com-
poses the new harmony is governed by the Harmony Memory
Considering Rate (HMCR), Pitch Adjusting Rate (PAR), and Bandwidth
(bw) parameters. The HMCR ranges from 0 to 1 and is defined as the
probability of an existing value in HM being selected to generate the
new note, while − HMCR1 is the probability of the new note being
randomly generated from the total set of possible solutions. If HMCR is
close to 1, then the solution diversity will not be preserved (worst
global search), while if HMCR is close to 0, then the diversity will be
high [59]. This parameter is very important because if the notes that
compose the optimal solution are not present in HM, then it would be

impossible to obtain this solution.
Each component obtained by the memory consideration is then

examined to decide whether or not it should be pitch adjusted. For this
purpose, the PAR parameter, which ranges from 0 to 1, is introduced
and is defined as the probability of the generated musical note being
replaced by an element in its neighborhood within a range −bw bw[ , ]
[41]. The PAR and bw parameters are responsible for local search and
prevent the algorithm from stagnating in local minimums.

4.4. Cuckoo Search (CS)

The CS was proposed by Yang and Deb [60] and is based on the
parasitic behavior of some Cuckoo bird species in combination with
Lévy’s flight.

Cuckoos are parasitic birds that usually lay their eggs in other birds’
nest [19]. After egg deposition, the host may identify the parasitic egg,
and if this occurs, then the cuckoo’s egg is removed or the host leaves
the nest and builds a new one elsewhere. Some cuckoo species are even
capable of mimicking the pattern and color of the host nest eggs, which
reduces their chances of being detected [60].

In the CS algorithm, each egg in a nest represents a potential solu-
tion to the problem, and each cuckoo egg deposited is a new solution. In
addition, the algorithm obeys three idealized rules [61]:

• Each cuckoo lays only one egg at a time. The nest in which this egg
will be deposited is chosen randomly.

• The best nests with high quality eggs (best solutions) are kept for the
next generation.

• The number of host nests is fixed, and the probability of a cuckoo
egg being detected is pd. If the parasitic egg is detected, then it is
removed or the host leaves the nest to build a new one.

The new solution of the ith cuckoo is generated through Lévy’s
flight, according to Eq. (9), where α is a constant usually equal to 1, and
⊕ means entrywise multiplications [4].

= + ⊕new solution current solution α Levy λ́ ( )i i (9)

Lévy’s flight is defined as a random walk whose length of random
steps follows the Lévy distribution (Eq. (10)), and the direction of these
steps follows a uniform distribution. Through this flight mechanism, the
new solutions can present very different values from the current best
solution, which intensifies the global search process and prevents the
algorithm from stagnating in local minimums [62].

= < ⩽−Levy λ τ t λ́ ( )~ , (1 3)λ (10)

CS is conducted as follows [19]:

1. Random generation of the initial population composed of Nnests
nests.

2. Calculation of the objective function for each nest, the best solution
is kept for the next generation.

3. Generation of new solutions through Lévy’s flight (Eq. (9)). If the
new solution is better than the previous one, then the old one is
replaced by the new one, otherwise the old solution is kept.

4. Generation of a random n[0,1] number between 0 and 1 for each nest.
If >n pd[0,1] , then the cuckoo’s egg is discovered and the host leaves
the nest to build a new one. The new nests are compared with the
nests obtained in step 3, so that only the best ones are kept.

5. Steps 2 to 4 are repeated until the stopping criterion is reached. The
best solution obtained is returned.

5. Multi-criteria analysis for distribution model selection

Several statistical tests can be used to select the distribution model
that best fits a region’s wind speed data, such as: Root Mean Square
Error [63], Relative Root Mean Square Error, Mean Absolute Error [32],
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Index of Agreement [4], Akaike Information Criterion [64], Bayesian
Information Criterion [5], Kolmogorov–Smirnov Test [20], Power
Density Error [1] and Coefficient of Determination [22,52].

However, when conducting an analysis with different criteria, the
results may vary significantly between models and the analysis may be
inconclusive [8]. Moreover, according to Kantar et al. [10], there is
currently no consensus on which criterion is best for determining the
most accurate distribution model. In a two-criteria analysis, for ex-
ample, it is possible for one model to be the best in one criterion, and
another model to be the best in another criterion. This would cause
confusion and, consequently, a poor selection of the most accurate
model. Amid this scenario, Masseran [8] proposed a multi-criterion
approach based on multiplicative aggregation with a standardized score
for each statistic criterion. In this process, all criteria are simultaneously
considered and a single result is generated, which is adopted to select
the most accurate model.

In the first step of this approach, the Kolmogorov–Smirnov Test
(KS), Akaike Information Criterion (AIC), Deviation of Skewness and
Kurtosis (DSK), and − R1 2 statistical tests are calculated:

• KS: This test computes the largest difference between the predicted
and the observed distribution and it is given by Eq. (11) [65]:

̂= −⩽ ⩽KS max F F| |i n i i1 (11)

where ̂Fi are the predicted cumulative probabilities from the fitted
model and Fi are the observed cumulative probabilities of the wind
speed data. A smaller KS indicates better fitting performance, and
vice versa.

• AIC: This statistical test is a measure of information lost when a
model is fitted to a dataset and is given by the Eq. (12), where L is
the Likelihood function and np is the number of parameters of the
fitted model [8]. The lower the AIC, the better the fit [33].

= − +AIC log L n2 ( ) 2 p (12)

• DSK: This is used to measure the similarity between the shape
characteristics of the fitted model and the empirical distribution of
data [8]. The skewness γ1 and the kurtosis γ2 of a distribution can be
calculated, respectively, through Eqs. (13) and (14):

=
− +

−
γ E X E X E X E X

E X E X
( ) 3 ( ) ( ) 2 ( )

[ ( ) ( ) ]1

3 2 3

2 2 3 (13)

=
− + −

−
γ E X E X E X E X E X E X

E X E X
( ) 4 ( ) ( ) 6 ( ) ( ) 3 ( )

[ ( ) ( ) ]2

4 3 2 2 4

2 2 4 (14)

where ∫= ∞E X x f x dx( ) ( )n n
0 . The empirical skewness g1 and the

empirical kurtosis g2 of the data are given, respectively, by the Eqs.
(15) and (16), where x̄ and s are, respectively, the average and the
standard deviation of the wind speed data [14].
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2
1

4

4 (16)

The DSK criterion is the calculated by Eq. (17). The smaller the DSK,
the better the distribution fits the observed data [66].

= − −DSK γ g γ g( ) ·( )1 1
2

2 2
2 (17)

• − R1 2: The R2 test was presented earlier and is calculated by Eq. (2).
Because the best possible value of R2 is 1, the integrated approach
uses the value − R1 2, that way, the minimization of all criteria
becomes indicative of a good fit.

Subsequently, each criterion is subjected to a standardization pro-
cess in which a dataset with a given mean and standard deviation is
converted into a dataset with mean 0 and standard deviation 1, ac-
cording to Eq. (18):

=
−

z
w w

s
¯

ij
ij j

j (18)

where wij is the ith value of the j criterion, zij is the standardized score,
w̄j and sj are, respectively, the mean and standard deviation of the j
criterion.

During standardization, it is possible that z-scores show positive and
negative signs, which would affect the multiplicative aggregation.
Therefore, to ensure that the standardized scores are comparable, the
Standard Normal Cumulative Distribution Function Transformation
(SNCDFT), given by Eq. (19), is used so that the values of z-scores are
between 0 and 1.

∫=
−∞

−
z

π
e dtΦ( ) 1

2ij
z t

2
ij 2

(19)

The z-scores of each criterion, after being submitted to SNCDFT, are
multiplied and a single value is generated. In this work, this value is
called Global Score (GS). The distribution with the lowest GS is the
most suitable for the region and, as shown by Masseran [8], the model
with the lowest GS presents not only the best fit in numerical terms but
also the best fit graphically. Therefore, the use of this approach sim-
plifies the comparative analysis between different models and ensures
the objective selection of the most suitable distribution for a given re-
gion.

6. Results and discussion

6.1. Objective function selection

The results obtained through the three objective functions were
compared for each probability distribution. Considering both regions
analyzed, the maximization of the R2 was the objective function that, in
55.68% of the cases, presented the lowest GS; that is, the best fit. The
minimization of the RMSE and the Hybrid objective functions only
ensured the best result in 25.00% and 19.32% of the cases, respectively.
Therefore, the following discussion is based only on the results gener-
ated trough the maximization of the R2. However, it is important to
emphasize that, in this particular analysis, based on the AIC KS DSK, , ,
and − R1 2 criteria, the objective function R2 ensured good results. If an
analysis is conducted with other statistical criteria, then the other two
functions presented may provide better performance.

6.2. Station SCR-25

Once the distribution parameters were estimated, the
− R KS AIC1 , ,2 and DSK statistical tests for SCR-25 station were cal-

culated and the results are presented in Table 4, including the Global
Score GS generated from these four tests. In this section, we used the
nomenclature DistributionMethod to refer to a particular distribution
model and to the method used to estimate its parameters; for example,
GGICA refers to the GG distribution with parameters estimated by the
ICA method.

By comparing, for example, the results of EGLMBO and EGLHS, the
variation observed in the statistical tests would make it impossible to
objectively decide which method ensured greater accuracy in para-
meter estimation. The result obtained through MBO is better in the

− R1 2 and KS tests, while the result obtained by the HS is better in the
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AIC and DSK tests. In this situation, it would be necessary to measure
the importance of each criteria and the decision of the best model
would be subjective. However, through the integrated approach, the
analysis becomes more objective and more accurate. In this case, the GS
of EGLHS and EGLMBO distributions are, respectively, 0.006889 and
0.006453, while the latter is the best in comparison.

This approach is useful not only to compare results obtained from
different methods but also to compare different distribution models. For
example, when comparing the results of the DICA and NCS distributions,

the DICA distribution has lower values of KSand AICand NCS distribution
has lower values of − R1 2 and DSK. When compared in terms of GS, it is
evident the better performance of NCS with =GS 0.013496, while DICA

provided =GS 0.016699. These two situations reaffirm the advantage
and justify the use of an integrated approach in this study.

Comparing the same distribution model, it can be seen that the GS
values obtained by the MOA are significantly lower than those obtained
by the deterministic method MLE. The distribution DCS was the only
one that did not provide a lower GS value when compared to DMLE.
However, the other three methods used achieved this feat, demon-
strating the applicability and high performance of the MOA in de-
termining the parameters of the two and three-parameter distributions.
Moreover, it can be seen that, in most distributions, the GS values ob-
tained by the MOA showed slight variations, which demonstrates that
these methods obtained similar solutions. For example, the GS of
GLMBO, GLICA, GLHS and GLCS are 0.083748, 0.084100, 0.083958 and
0.083494, respectively.

For the same parameter estimation method, the GS obtained by GG
is the smallest and that obtained by LN is the largest. In the case of MLE,
the GS from BS distribution is the largest. Therefore, among the ana-
lyzed distributions, GG was the one that provided the best fit in this
region, while LN and BS presented the worst fits.

6.2.1. Optimal distribution model selection for SCR-25
To determine the probability distribution and the estimation

method that guaranteed the best fit to the wind speed data from São
João do Cariri, the result with the lowest GS from each distribution was
extracted from Table 4 and the results are presented in Table 5. This
also showed the position of each distribution in the rank. The estimated
parameters of the distributions presented in Table 5 are provided in
Table 6.

The distribution that provided the best fit was the GGICA, followed
by EGLMBO and GEVCS, in second and third place, respectively.

The WMBO distribution, which is one of the most widely used due to
its versatility and good fit in different regions, ranked fourth, which
confirms that this distribution is not always the most suitable. However,
among the two-parameter distributions, the WMBO was the one with the
lowest GS.

Of all 11 distributions, the BSHS and the LNICA were the ones that
presented the worst values of GS. In general, it can be inferred that, in
São João do Cariri, the three-parameter distributions, which were fitted
through MOA with the objective function R2, provided a better fit in
relation to the two-parameter distributions, which were fitted in the
same way and occupied the highest positions in the rank. In addition, it
is important to emphasize, once again, that none of the best results were
provided by the MLE, which proves that the MOA-based models per-
formed better than the traditional NM-based models.

Fig. 2 provides a graph of each of the models presented in Table 5.
For better visualization, the two and three-parameter distributions are
presented separately.

From Fig. 2, it is possible to see that, among the two-parameter
models, the WMBO and NCS distributions presented the best fits. The GHS,
GLCS, BSHS and LNICA distributions were the ones that presented the
worst fits. These results are perfectly in agreement with the numerical
result obtained through the integrated approach because, among the
two-parameter models, the WMBO and NCS distributions had the lowest
GS and the GHS, GLCS, BSHS and LNICA distributions the highest GS.

It is also important to emphasize that this results are not affected by
the bin size or bin numbers because all the three objective functions
adopted in this work (See Eqs. (2)–(4)) were applied as a function of the
predicted cumulative probabilities obtained from the fitted model (Fi )
and the observed cumulative probabilities (Fi) at each data point. The
bin size and the bin numbers are not variables of the Eqs. (2)–(4). Re-
garding the MLE, the bin size and the bin numbers are also not variables
of this method.

All of the three-parameter distributions showed similar graphic

Table 4
Results of the Coefficient of Determination ( − R1 2), Kolgomorov-Smirnov Test
(KS), Akaike Information Criterion (AIC) and Deviation of Skewness and
Kurtosis (DSK) tests and the Global Score (GS) generated from the four tests in
SCR-25.

Method Model − R1 2 KS AIC DSK GS

MBO W 0.000574 0.014455 238132.745 0.114126 0.009369
G 0.003784 0.036525 244618.814 1.474199 0.051648
BS 0.011968 0.071369 307993.008 3.753875 0.382511
N 0.000786 0.020145 238968.175 0.251003 0.013540
LN 0.009629 0.053931 266166.376 9.133399 0.390851
GL 0.005056 0.043610 245272.189 2.643198 0.083748
GEV 0.000253 0.011110 237936.878 0.022947 0.007442
B 0.000534 0.017753 238491.024 0.217354 0.011528
D 0.001943 0.022985 238187.991 0.096140 0.014818

EGL 0.000397 0.009580 237020.772 0.006519 0.006453
GG 0.000102 0.007636 237246.008 0.025975 0.005795

ICA W 0.000357 0.015399 238130.005 0.128029 0.009732
G 0.003900 0.035331 244982.699 1.401672 0.050449
BS 0.009624 0.057409 295427.995 4.705488 0.356582
N 0.000790 0.020240 238976.293 0.250689 0.013605
LN 0.009568 0.053470 266863.515 8.798650 0.387863
GL 0.005062 0.043675 245335.853 2.640323 0.084100
GEV 0.000251 0.011352 237948.057 0.025259 0.007549
B 0.000596 0.018732 238528.885 0.217207 0.012126
D 0.000796 0.018286 238520.273 1.607747 0.016699

EGL 0.000385 0.012710 237163.310 0.020883 0.007745
GG 0.000190 0.007468 237251.611 0.023672 0.005766

HS W 0.000353 0.014897 238114.779 0.126053 0.009477
G 0.003787 0.035550 244719.734 1.452952 0.050359
BS 0.009632 0.057295 295447.595 4.686767 0.355545
N 0.000786 0.020224 238962.676 0.251681 0.013585
LN 0.009594 0.054127 266735.745 8.921705 0.392168
GL 0.005060 0.043604 245332.193 2.640350 0.083958
GEV 0.000260 0.011895 237880.164 0.009455 0.007708
B 0.000534 0.017413 238480.578 0.214431 0.011331
D 0.002234 0.022562 238126.034 0.064479 0.014609

EGL 0.000433 0.010752 237003.080 0.004846 0.006889
GG 0.000102 0.007646 237249.452 0.026446 0.005800

CS W 0.000353 0.014789 238112.183 0.125258 0.009423
G 0.003783 0.036121 244660.830 1.465260 0.051108
BS 0.009620 0.056998 296556.512 4.730798 0.356122
N 0.000786 0.020075 238964.664 0.251052 0.013496
LN 0.009563 0.053921 267044.953 8.726596 0.390115
GL 0.005056 0.043399 245303.450 2.641275 0.083494
GEV 0.000245 0.011140 237918.596 0.016894 0.007429
B 0.000536 0.018090 238501.912 0.218988 0.011722
D 0.000658 0.021876 238830.136 3.266149 0.026639

EGL 0.000209 0.010214 237121.839 0.042366 0.006725
GG 0.000103 0.007831 237252.272 0.026292 0.005865

MLE W 0.001317 0.018823 238020.523 0.113605 0.011925
G 0.015054 0.053450 243627.468 1.801609 0.112394
BS 0.124033 0.146974 272893.147 10.994830 0.918208
N 0.004060 0.028407 238798.948 0.263907 0.021988
LN 0.051467 0.090703 258070.094 25.183177 0.733778
GL 0.016834 0.054603 243740.888 2.829225 0.145563
GEV 0.001244 0.017380 237592.360 0.000116 0.010478
B 0.001796 0.021748 238526.282 0.232945 0.014821
D 0.002926 0.028497 238099.968 0.101334 0.019059

EGL 0.000821 0.014641 236949.896 0.005532 0.008597
GG 0.000517 0.011197 236940.846 0.001241 0.007054

K.S. Guedes, et al. Applied Energy 268 (2020) 114952

9



performance, except for DHS. The DHS displayed maximum density
value in the interval −5 6 m/s, while the maximum density observed in
the data is in the interval −4 5 m/s. Moreover, it can also be seen that
for velocities between −9 11 m/s, this distribution presented lower
density than the observed data. This poor performance of the DHS dis-
tribution agrees with its GS value, which was the worst among the three
parameter distributions. As for the other three-parameter models, due

to their great similarity, it is necessary to consider the GS values to
determine which one was the most accurate, which in that situation was
the GGICA with =GS 0.005766.

Regarding the performance of the MOA, the results presented in
Table 5 are not conclusive to affirm if any method is superior. No
method presented significant predominance in relation to the others. In
other words, different methods ensured the best result in different
distributions. However, it is worthy of note that the MBO and ICA
methods, which were used to fit the two and three-parameter dis-
tributions for the first time in this study, guaranteed good results for the
W and EGL, and LN and GG distributions, respectively. The HS, which
was used for the first time in three-parameter distributions, provided
the best result in G, BS, B, and D distributions. The CS guaranteed the
best result in N, GL, and GEV distributions.

6.3. Station PTR-11

The statistical test results for PTR-11 station are shown in Table 7.
From Table 7, it is possible to see the advantages of using the in-

tegrated approach when comparing the results. For example, WICA and
GEVCS. The result provided by the ICA has lower values of AIC and DSK,
while the result obtained by the CS has lower values of − R1 2 and KS.
Comparing them in terms of GS, GEVCS showed =GS 0.007910 and WICA

showed =GS 0.007894, the latter is the best of the two.

Table 5
Best result (lower GS) of each distribution model in SCR-25 (Extracted from Table 4).

Method Models − R1 2 KS AIC DSK GS Rank

MBO W 0.000574 0.014455 238132.745 0.114126 0.009369 4
HS G 0.003787 0.035550 244719.734 1.452952 0.050359 8
HS BS 0.009632 0.057295 295447.595 4.686767 0.355545 10
CS N 0.000786 0.020075 238964.664 0.251052 0.013496 6
ICA LN 0.009568 0.053470 266863.515 8.798650 0.387863 11
CS GL 0.005056 0.043399 245303.450 2.641275 0.083494 9
CS GEV 0.000245 0.011140 237918.596 0.016894 0.007429 3
HS B 0.000534 0.017413 238480.578 0.214431 0.011331 5
HS D 0.002234 0.022562 238126.034 0.064479 0.014609 7
MBO EGL 0.000397 0.009580 237020.772 0.006519 0.006453 2
ICA GG 0.000190 0.007468 237251.611 0.023672 0.005766 1

Table 6
Parameters k (Shape parameter), c (Scale parameter), p (Second shape para-
meter) and u (Location parameter) of best distribution models in SCR-25. These
values are the ones obtained from the simulations whose statistical tests are
presented in Table 5.

Method Models k c p u

MBO W 2.3707 6.0098 – –
HS G 4.4726 1.2148 – –
HS BS 0.4840 4.9628 – –
CS N 1.2834 34.3363 – –
ICA LN 0.4827 1.6025 – –
CS GL 3.6083 0.5520 – –
CS GEV −0.2166 2.3377 – 4.3102
HS B 22.5375 21.7607 2.3911 –
HS D 0.1947 7.9079 8.6932 –
MBO EGL 0.2017 0.1964 3.0506 –
ICA GG 0.7071 6.9428 2.9727 –
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Fig. 2. Two (left) and three (right) parameters probability density functions in SCR-25. The curves obtained by the different probability density functions are plotted
over the local histogram, to facilitate the performance comparison. The local histogram was built in 1 m/s bins, in accordance to the literature, and consequently the
bin quantity was established by the wind speed range found in SCR-25. The k1 m/s bins can be found, for example, in the studies conducted by Mohammadi et al. [5],
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Comparing the same distribution model, it can be seen that all va-
lues of GS obtained by the MOA are significantly lower than those
obtained by MLE, which again demonstrates the applicability and high
performance of the MOA in determining the parameters of the wind
speed distributions used. In addition, the GS values obtained by the
MOA showed slight variations, which demonstrates that these methods
obtained similar solutions. For example, the GS of NMBO, NICA, NHS, and
NCS are 0.016877, 0.016951, 0.016953 and 0.016875, respectively.

For the same parameter estimation method, the GS obtained by EGL

is the smallest and that obtained by LN is the largest. In the case of MLE,
the GS from BS distribution is the largest. Therefore, among the ana-
lyzed distributions, EGL provided the best fit in this region, while LN
and BS presented the worst fits.

6.3.1. Optimal Distribution Model Selection for PTR-11
The result with the lowest GS from each distribution used in

Petrolina was extracted from Table 7 and presented in Table 8. The
estimated parameters of the best distribution models are provided in
Table 9.

The distribution that provided the best fit was EGLMBO, followed by
DMBO and GGICA, in second and third place, respectively.

The WICA distribution ranked fifth, confirming again that this dis-
tribution is not always the most suitable. However, among the two-
parameter distributions, the WICA presented the lowest GS.

Of all 11 distributions, the BSHS and the LNHS had the worst values
of GS. In general, it can be inferred that, in Petrolina, the three-para-
meter distributions, which were fitted through MOA with the objective
function R2, provided a better fit in relation to the two-parameter dis-
tributions, which were fitted in the same way and occupied the highest
rank positions. Moreover, it is important to emphasize, once again, that
none of the best results were provided by the MLE, which proves the
good performance of the MOA.

Fig. 3 provides a graph of each model presented in Table 8. It is
possible to see that from Fig. 3 that among the two-parameter models,
the distribution WICA and NCS presented the best fits. The WICA dis-
tribution was the one that best approximated the maximum density
value observed in the histogram. Meanwhile, the distributions GMBO,
GLICA, BSHS and LNHS presented the worst fits. These results are per-
fectly in agreement with the GS values obtained because, among the
two-parameter models, the WICA and NCS distributions presented the
lowest GS and the GMBO, GLICA, BSHS and LNHS distributions had the
highest GS.

All of the three-parameter distributions showed similar graphic
performance, except for DMBO. The DMBO distribution displayed a
maximum density value that was slightly higher than the maximum
value observed in the histogram. However, it is possible to see subtle
differences in this model in relation to the others. For example, in the

−3 4 m/s and −7 8 m/s intervals, the density displayed by this dis-
tribution is slightly lower than the density obtained by the other three-
parameter distributions. Thus, to avoid subjective conclusions in de-
ciding the most accurate model, it is necessary to consider the values of
the statistical tests. In this case, the EGLMBO was the best with

=GS 0.005246. The DMBO model, which was the most distinct from the
other three-parameter distributions, ranked second with =GS 0.006860.

Regarding the performance of the MOA, the results presented in
Table 8 are not conclusive enough to affirm if any method is superior to
the others. As in São João do Cariri, no method showed a significant
predominance in relation to the others. The MBO and ICA methods
ensured good results for the G, D and EGL, and W, GL, B and GG dis-
tributions, respectively. The HS method provided good results for the
BS, LN and GEV models, and the CS for the N model.

7. Conclusion

Due to the lack of studies that apply optimization methods in the
estimation of wind speed distribution parameters, four Metaheuristic
Optimization Algorithms (MOA)—namely, Migrating Birds
Optimization (MBO), Imperialist Competitive Algorithm (ICA),
Harmony Search (HS) and Cuckoo Search (CS)—were used in this paper
to determine the optimal parameters of 11 wind speed distribution
models, which are mostly non-conventional models. This is the first
time that MBO and ICA have been used for this purpose and is also the
first time that HS has been applied to three-parameter distributions.
Furthermore, to improve the accuracy in fitting the wind speed fre-
quency, three objective functions were applied to the optimization

Table 7
Results of the Coefficient of Determination ( − R1 2), Kolgomorov-Smirnov Test
(KS), Akaike Information Criterion (AIC) and Deviation of Skewness and
Kurtosis (DSK) tests and the Global Score (GS) generated from the four tests in
PTR-11.

Method Model − R1 2 KS AIC DSK GS

MBO W 0.000612 0.017412 209002.163 0.004601 0.008266
G 0.004228 0.045361 218950.901 0.370237 0.051379
BS 0.008148 0.062829 270459.619 1.550372 0.279593
N 0.001783 0.031105 211471.356 0.018213 0.016877
LN 0.008260 0.063264 243633.937 2.077473 0.300827
GL 0.007615 0.055561 227299.561 1.966291 0.192398
GEV 0.000576 0.014806 209148.212 0.055842 0.007755
B 0.000624 0.018686 208870.487 0.019825 0.008748
D 0.000310 0.012385 207765.650 0.177590 0.006860

EGL 0.000426 0.009722 207496.629 0.011904 0.005246
GG 0.000582 0.015121 208995.341 0.015806 0.007544

ICA W 0.000650 0.016483 208839.208 0.008137 0.007894
G 0.004259 0.047060 219403.763 0.357497 0.053866
BS 0.008156 0.063038 270538.725 1.552027 0.280481
N 0.001784 0.031222 211483.671 0.018225 0.016951
LN 0.008031 0.061071 241838.032 2.233963 0.295729
GL 0.007623 0.055233 227200.820 1.966589 0.190958
GEV 0.000603 0.015276 209232.175 0.032188 0.007824
B 0.000644 0.018596 208887.686 0.019816 0.008733
D 0.000354 0.009717 207868.938 0.488103 0.007548

EGL 0.000453 0.013724 207772.467 0.028113 0.006548
GG 0.000624 0.013973 208932.538 0.023746 0.007194

HS W 0.000613 0.017577 209029.892 0.004045 0.008336
G 0.004453 0.050014 220256.394 0.337027 0.058689
BS 0.008259 0.059861 267403.783 1.643141 0.278916
N 0.001786 0.031230 211480.466 0.018219 0.016953
LN 0.008323 0.056429 239133.621 2.484453 0.284167
GL 0.007629 0.056887 227956.160 1.964457 0.199920
GEV 0.000587 0.014901 209193.964 0.042432 0.007733
B 0.000624 0.018845 208889.514 0.019486 0.008814
D 0.000269 0.011278 207831.574 0.274764 0.007007

EGL 0.000407 0.010054 207527.216 0.014464 0.005350
GG 0.000591 0.015355 209062.035 0.026045 0.007721

CS W 0.000612 0.017412 209002.166 0.004601 0.008266
G 0.004228 0.045429 218966.785 0.369798 0.051473
BS 0.008147 0.062742 270332.000 1.554897 0.279734
N 0.001783 0.031104 211471.207 0.018213 0.016875
LN 0.008027 0.061102 241806.339 2.239767 0.296050
GL 0.007615 0.055575 227305.815 1.966273 0.192475
GEV 0.000573 0.015180 209203.073 0.055597 0.007910
B 0.000624 0.018747 208880.268 0.019537 0.008774
D 0.000116 0.008508 207893.067 0.626664 0.007684

EGL 0.000387 0.011380 207580.049 0.012057 0.005707
GG 0.000582 0.015183 208992.895 0.015068 0.007559

MLE W 0.003001 0.027339 208373.240 0.032883 0.012938
G 0.025066 0.072438 215112.315 0.656764 0.125662
BS 0.177518 0.175007 244775.917 6.572223 0.926383
N 0.010131 0.048517 210121.376 0.012957 0.031527
LN 0.063472 0.106895 227333.310 7.470845 0.663506
GL 0.037652 0.083018 217336.642 2.112967 0.310026
GEV 0.006277 0.036546 208778.585 0.023315 0.019597
B 0.002752 0.026769 208423.086 0.037634 0.012663
D 0.000655 0.015492 207675.236 0.145036 0.007761

EGL 0.001231 0.017127 207336.423 0.006538 0.007471
GG 0.003224 0.027008 208219.292 0.003414 0.012468
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methods, and we subsequently identified which ensured greater accu-
racy. To evaluate the performance of the MOA, the deterministic
method Maximum Likelihood Estimation (MLE) was used as a re-
ference. Finally, our results were analyzed through an integrated ap-
proach that mutually considers four goodness-of-fit criteria that are
commonly used in this type of study—namely, Coefficient of
Determination (R2), Kolgomorov-Smirnov Test (KS), Akaike

Information Criterion (AIC) and Deviation of Skewness and Kurtosis
(DSK)—in a single value, called a Global Score (GS). The present study
was conducted in two cities of the Northeast of Brazil, which is one of
the best regions in the world for wind power generation thanks to the
extremely favorable characteristics of the wind regime.

When comparing the results obtained through the three objective
functions, the maximization of the R2 provided the best fit because the
GS obtained through this objective function was the lowest in most of
the distributions used.

When conducting the comparative analysis, the integrated approach
proved to be extremely useful. Given the variations observed in the

− R KS AIC1 , ,2 , and DSK statistical tests, it would be necessary to
measure the importance of these tests to determine the most accurate
distribution model. However, using the GS as a decision criterion,
comparisons were made simply and objectively. In addition, the GS
values perfectly matched the graphical performance of the fitted models
because the best fitted models also had the lowest GS values.

In São João do Cariri, the wind speed distributions fitted through
the MOA, except for the DCS (Dagum distribution with parameters es-
timated by the CS method), showed higher accuracy when compared to
the same distributions fitted by MLE; that is, the GS values obtained
through the optimization methods were significantly lower than those
obtained by the MLE. In Petrolina, every distribution fitted through the
MOA presented higher accuracy. These results demonstrate the high

Table 8
Best result (lower GS) of each distribution model in PTR-11 (Extracted from Table 7).

Method Models − R1 2 KS AIC DSK GS Rank

ICA W 0.000650 0.016483 208839.208 0.008137 0.007894 5
MBO G 0.004228 0.045361 218950.901 0.370237 0.051379 8
HS BS 0.008259 0.059861 267403.783 1.643141 0.278916 10
CS N 0.001783 0.031104 211471.207 0.018213 0.016875 7
HS LN 0.008323 0.056429 239133.621 2.484453 0.284167 11
ICA GL 0.007623 0.055233 227200.820 1.966589 0.190958 9
HS GEV 0.000587 0.014901 209193.964 0.042432 0.007733 4
ICA B 0.000644 0.018596 208887.686 0.019816 0.008733 6
MBO D 0.000310 0.012385 207765.650 0.177590 0.006860 2
MBO EGL 0.000426 0.009722 207496.629 0.011904 0.005246 1
ICA GG 0.000624 0.013973 208932.538 0.023746 0.007194 3

Table 9
Parameters k (Shape parameter), c (Scale parameter), p (Second shape para-
meter) and u (Location parameter) of best distribution models in PTR-11. These
values are the ones obtained from the simulations whose statistical tests are
presented in Table 8.

Method Models k c p u

ICA W 3.2446 5.4667 – –
MBO G 8.4757 0.5919 – –
HS BS 0.3521 4.7833 – –
CS N 2.2908 27.3741 – –
HS LN 0.3542 1.5636 – –
ICA GL 10.0910 0.8051 – –
HS GEV −0.2891 1.6543 – 4.3059
ICA B 23.2664 13.8914 3.3377 –
MBO D 0.3000 6.3238 8.7330 –
MBO EGL 0.0496 0.4040 3.2339 –
ICA GG 0.8353 5.8091 3.6640 –
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Fig. 3. Two (left) and three (right) parameters probability density functions in PTR-11. The curves obtained by the different probability density functions are plotted
over the local histogram, to facilitate the performance comparison. The local histogram was built in 1 m/s bins, in accordance to the literature, and consequently the
bin quantity was established by the wind speed range found in PTR-11. The 1 m/s bins can be found, for example, in the studies conducted by Mohammadi et al. [5],
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performance of the MOA and their feasibility to determine the optimal
parameters of two and three-parameter distributions. Regarding the
performance of the MOA, the results were not conclusive enough to
affirm if any one method is superior. Moreover, in both regions, the
results obtained through the MOA were very similar because, for the
same distribution, the four optimization methods provided close values
of GS.

In both regions, the three-parameter models provided, in general,
better fit (lower GS) than the two-parameter models. It was also shown
that the widely used Weibull (W) distribution is not the most suitable.
In São João do Cariri, the best fit was obtained through the GGICA

(Gamma Generalized distribution with parameters estimated by the ICA
method), which showed =GS 0.005766, and the WMBO (Weibull dis-
tribution with parameters estimated by the MBO method) ranked fourth
with =GS 0.009369. In Petrolina, the best fit was obtained through the
recently proposed EGLMBO (Extended Generalized Lindley distribution
with parameters estimated by the MBO method) distribution, which
showed =GS 0.005246, and the WICA (Weibull distribution with para-
meters estimated by the ICA method) distribution ranked fifth with

=GS 0.007894. The Birnbaum-Saunders (BS) and Lognormal (LN)
models presented the worst fits (highest GS) in both regions.

Data Availability

The raw wind speed data used in this study are openly available at:

• SCR-25: http://sonda.ccst.inpe.br/basedados/sjcariri.html
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