Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.ufc.br/handle/riufc/65101
Tipo: Artigo de Evento
Título : Path Planning Collision Avoidance using Reinforcement Learning
Título en inglés: Path Planning Collision Avoidance using Reinforcement Learning
Autor : Batista, Josias Guimarães
Vasconcelos, Felipe José de Sousa
Ramos, Kaio Martins
Souza, Darielson Araújo de
Silva, José Leonardo Nunes da
Palabras clave : Path planning;Collision avoidance;Reinforcement learning;Robotic manipulator;Trajectory generation
Fecha de publicación : 2020
Editorial : Sociedade Brasileira de Automática (SBA) - https://www.sba.org.br/; Galoá Science - https://galoa.com.br/ - https://cba2020.galoa.com.br/
Citación : BATISTA, Josias Guimarães; VASCONCELOS, Felipe José de Sousa; RAMOS, Kaio Martins; SOUZA, Darielson Araújo de; SILVA, José Leonardo Nunes da. Path planning collision avoidance using reinforcement learning. In: CONGRESSO BRASILEIRO DE AUTOMÁTICA, XXIII., 23 e 26 de Novembro de 2020, Online. Anais[…], Campinas, Galoá, v. 2 , n. 1, 2020. CBA2020. DOI: 10.48011/asba.v2i1.1597
Abstract: Industrial robots have grown over the years making production systems more and more efficient, requiring the need for efficient trajectory generation algorithms that optimize and, if possible, generate collision-free trajectories without interrupting the production process. In this work is presented the use of Reinforcement Learning (RL), based on the Q-Learning algorithm, in the trajectory generation of a robotic manipulator and also a comparison of its use with and without constraints of the manipulator kinematics, in order to generate collisionfree trajectories. The results of the simulations are presented with respect to the efficiency of the algorithm and its use in trajectory generation, a comparison of the computational cost for the use of constraints is also presented.
URI : http://www.repositorio.ufc.br/handle/riufc/65101
ISSN : 2525-8311
Aparece en las colecciones: DEEL - Trabalhos apresentados em eventos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
2020_eve_jgbatista.pdf4,54 MBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.