Please use this identifier to cite or link to this item: http://repositorio.ufc.br/handle/riufc/65053
Type: Tese
Title: Chemical sensing based on Carbon Quantum Dots for food additives analysis
Authors: Carneiro, Samuel Veloso
Advisor: Fechine, Pierre Basílio Almeida
Co-advisor: Freire, Rafael Melo
Keywords: Pontos Quânticos de Carbono;Sensoriamento químico;Fluorescência;Nanocompósito;Aditivos alimentares
Issue Date: 2022
Citation: CARNEIRO, Samuel Veloso. Chemical sensing based on Carbon Quantum Dots for food additives analysis. 2022. 153 f. Tese (Doutorado em Química) - Universidade Federal do Ceará, Fortaleza, 2022.
Abstract in Brazilian Portuguese: Plataformas de sensoriamento químico fluorescente têm sido aplicadas na detecção de diferentes tipos de analitos, incluindo aditivos alimentares. Dentre as suas vantagens, destaca-se a produção com baixo custo e alta sensibilidade no controle de qualidade, seguindo os limites máximos recomendados pelos órgãos competentes. Esses sensores podem se tornar mais versáteis quando são baseados em materiais nanoestruturados, tais como os da classe 0D, conhecidos como Pontos Quânticos de Carbono (PQCs). Na literatura, ainda há poucos trabalhos que incorporam PQCs em uma fase sólida, de modo a desenvolver um sensor de análise de campo com alta sensibilidade e seletividade. Diante desse panorama, essa tese resulta de uma pesquisa inovadora na área de sensores químicos, cujo objetivo geral é desenvolver plataformas de sensoriamento e um dispositivo para análise de segurança alimentar em produtos industrializados. O primeiro trabalho consistiu na síntese e caracterização de PQCs obtidos a partir de uma fonte de carbono natural (sementes da planta Caelsalpinia pulcherrima), com posterior aplicação de métodos quimiométricos de análise multivariada para identificar cinco aditivos alimentares em conservas de azeitona. As nanopartículas obtidas foram rotuladas como FM-CD e os resultados mostraram uma alta sensibilidade da estratégia proposta, a qual detectou concentrações tão baixas quanto 252 ng mL-1 de benzoato de sódio. Obteve-se também uma classificação com 100% de acurácia, baseada no algoritmo de Análise Linear Discriminante (LDA). Com o primeiro trabalho concluído, a próxima etapa foi obter novos PQCs, com um rendimento quântico (RQ) mais alto para ser aplicado em um sensor de análise de campo. Assim, PQCs foram sintetizados pela rota hidrotermal a partir do ácido cítrico, ácido bórico e polietilenomina ramificada e foram denominados de B,N-Cdot. Os resultados evidenciaram que essas nanopartículas com RQ igual 44,3% conseguiram detectar os íons nitrito com alta seletividade. A próxima etapa consistiu em impregnar os B,N-Cdots em uma matriz polimérica de álcool polivinílico (PVA) para desenvolver um sensor de análise de campo de íons nitrito. O nanocompósito foi empregado juntamente ao aplicativo PhotoMetrix e foi capaz de quantificar o analito. Portanto, essa tese apresenta resultados que comprovam o grande potencial dos PQCs no campo de sensoriamento químico e no desenvolvimento de dispositivos simples que viabilizam o controle de qualidade na indústria de alimentos.
Abstract: Fluorescent chemical sensing platforms have been applied to detect different types of analytes, including food additives. Among its advantages, the production with low cost and high sensitivity in quality control stands out, following the maximum limits recommended by competent organizations. These sensors become more viable when they are based on 0D nanostructured materials known as Carbon Quantum Dots (CQDs). In the literature, there are still few works that incorporate CQDs in a solid phase, to develop a field analysis sensor with high sensitivity and selectivity. Given this scenario, this thesis results from innovative research in the area of chemical sensors, whose general objective is to develop sensing platforms and a device for analyzing food safety in industrialized products. The first work consisted of the synthesis and characterization of CQDs obtained from a natural carbon source (seeds of the plant Caelsalpinia pulcherrima), with subsequent application of chemometric methods of multivariate analysis to identify five food additives in canned olives. The nanoparticles obtained were labeled as FM-CDs and the results showed a high sensitivity of the proposed strategy, which detected concentrations as low as 252 ng mL-1 of sodium benzoate. In addition, we obtained a classification with 100% accuracy, based on the algorithm Linear Discriminant Analysis (LDA). With the first work completed, the next step was to obtain new CQDs, with a higher quantum yield (QY) to be applied in a field analysis sensor. Thus, CQDs were synthesized by the hydrothermal route from citric acid, boric acid and branched polyethyleneimine, which were named B,N-Cdot. The results showed that these nanoparticles with QY equal to 44.3% were able to detect nitrite ions with high selectivity. The next step consisted of impregnating the B,N-Cdot in polyvinyl alcohol (PVA) polymer matrix to develop a nitrite ion field analysis sensor. The nanocomposite was used together with the PhotoMetrix application and was able to quantify the analyte. Therefore, this thesis presents results that prove the great potential of CQDs in the field of chemical sensing and in the development of simple devices that enable quality control in the food industry.
URI: http://www.repositorio.ufc.br/handle/riufc/65053
Appears in Collections:DQAFQ - Teses defendidas na UFC

Files in This Item:
File Description SizeFormat 
2022_tese_svcarneiro.pdf7,33 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.