Please use this identifier to cite or link to this item: http://repositorio.ufc.br/handle/riufc/64983
Type: Tese
Title: Intra- and intersystem interference in GNSS: Performance models and signal design
Authors: Enneking, Christoph
Advisor: Antreich, Felix Dieter
Co-advisor: Almeida, André Lima Férrer de
Keywords: Global Navigation Satellite Systems;Radio Frequency Compatibility;Pseudorandom Noise;Synchronization;Multiple Access Inter- ference
Issue Date: 2020
Citation: ENNEKING, Christoph. Intra- and intersystem interference in GNSS : performance models and signal design. 2020. 108 f. Tese (Doutorado em Engenharia de Teleinformática) – Universidade Federal do Ceará, Centro de Tecnologia, Programa de Pós-Graduação em Engenharia de Teleinformática, Fortaleza, 2020.
Abstract in Brazilian Portuguese: O sistema Europeu Galileo, o sistema de Posicionamento Global Americano (GPS, do inglês Global Positioning System) e outros sistemas globais de navegação por satélite (GNSS, do inglês global navigation satellite systems) transmitem sinais de espectro de difusão de sequência direta do espaço, permitindo que os receptores na Terra calculem sua posição, velocidade e tempo (PVT) com base no princípio da trilateração em pseudo-faixa. No entanto, como vários satélites e sistemas transmitem sinais simultaneamente dentro de bandas de frequência compartilhadas, a interferência de acesso múltiplo (MAI, do inglês multiple access interference) na forma de interferência intra- e intersistema pode afetar o processamento do sinal no receptor. Para computar uma pseudo-faixa, o receptor deve estimar os parâmetros de sincronização do respectivo sinal com alta resolução. Esta sincronização é realizada em uma abordagem de duas etapas, consistindo na aquisição de sinal (detecção) e estimação fina de parâmetros. A maioria dos GNSS depende de acesso múltiplo por divisão de código de sequência direta assíncrona (DS-CDMA), atribuindo diferentes códigos de ruído pseudo-aleatório (PRN, do ingês pseudorandom noise) a cada satélite. O esquema de acesso múltiplo mantém um nível controlado de MAI e de desempenho de estimativa de parâmetro, que precisa ser cuidadosamente modelado antes de lançar novos sinais ou aumentar os níveis de potência de transmissão. A International Telecommunications Union (ITU) regulamenta que a compatibilidade de radiofrequência (RFC, do inglês radio frequency compatibility) de sistemas, satélites e sinais dentro das bandas de radionavegação deve ser garantida, o que significa que o desempenho do receptor não deve ser prejudicado significativamente. Os modelos convencionais de desempenho do receptor são baseados no coeficiente de separação espectral entre o sinal desejado e o de interferência, e principalmente se baseiam na idealização de que os sinais GNSS são estacionários no sentido amplo (WSS), processos aleatórios gaussianos circularmente simétricos. Neste trabalho, propomos modelos aperfeiçoados de desempenho de estimativa grossa e fina de parâmetros de sincronização, levando em consideração a propriedade cicloestacionária de sentido amplo dos sinais e sua n˜ao circularidade. Isso é de particular interesse em relação à recente tendência de projeto de sinal para novos sinais coarse/acquisition (C/A) com códigos PRN curtos, que são especialmente vulneráveis `a MAI, mas muito atraentes para o grupo de dispositivos eletrônicos habilitados para GNSS do mercado de massa. Em última análise, nosso modelo de desempenho permite que o designer de sinal C/A minimize o comprimento do código PRN enquanto garante uma determinada restrição de desempenho de aquisição. Além disso, no que diz respeito ao RFC de um número crescente de sistemas de navegação, satélites e sinais, nossos modelos detalhados para efeitos de interferência em equipamentos de uso em massa permitirão um uso mais eficiente do espectro de radiofrequência disponíıvel.
Abstract: The European Galileo, the American Global Positioning System (GPS), and other global naviga- tion satellite systems (GNSSs) transmit direct-sequence spread spectrum (DSSS) signals from space, allowing receivers on Earth to compute their position, velocity, and time (PVT) based on the principle of pseudorange trilateration. However, as multiple satellites and systems transmit signals simultaneously within shared frequency bands, multiple access interference (MAI) in the form of intra- and intersystem interference can a ect signal processing at the receiver. To compute a pseudorange, the receiver must estimate synchronization parameters of the respective signal with high resolution. This synchronization is performed in a two-step approach, consisting of signal acquisition (detection) and fine parameter estimation. Most GNSSs rely on asynchronous direct-sequence code-division multiple access (DS-CDMA), assigning di erent pseudorandom noise (PRN) code to each satellite. This multiple access scheme involves a controlled level of MAI degrading acquisition and parameter estimation performance, which needs to be care- fully modeled before launching new signals or raising transmit power levels. The International Telecommunications Union (ITU) regulates that radio frequency compatibility (RFC) of systems, satellites and signals within the radionavigation frequency bands must be ensured, meaning that receiver performance must not be harmed significantly. Conventional receiver performance models are based on the spectral separation coe cient (SSC) between desired and interfering signal, and mostly rely on the idealization that GNSS signals are wide-sense stationary (WSS), circularly-symmetric Gaussian (CSG) random processes. In this work, we propose refined models for performance of coarse and fine estimation of synchronization parameters, taking into account the signals’ wide-sense cyclostationary (WSCS) property and their non-circularity. This is of particular interest in light of the recent signal design trend towards novel coarse/acquisition (C/A) signals with short PRN codes, which are especially vulnerable to MAI but very attractive for the group of mass-market GNSS-enabled electronic devices. Ultimately, our performance model enables the C/A signal designer to minimize the PRN code length while ensuring a given acquisition performance constraint. Moreover, with regard to RFC of an increasing number of navigation systems, satellites, and signals, our detailed models for interference e ects on user equipment will allow to make more e cient use of the available radio frequency spectrum.
URI: http://www.repositorio.ufc.br/handle/riufc/64983
Appears in Collections:DETE - Teses defendidas na UFC

Files in This Item:
File Description SizeFormat 
2020_tese_cenneking.pdf7,52 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.