Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/64548
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorLima, Marcello Anderson Ferreira Batista-
dc.contributor.authorCarvalho, Paulo Cesar Marques de-
dc.contributor.authorFernández Ramírez, Luis Miguel-
dc.contributor.authorBraga, Arthur Plínio de Souza-
dc.date.accessioned2022-03-22T17:53:57Z-
dc.date.available2022-03-22T17:53:57Z-
dc.date.issued2020-
dc.identifier.citationLIMA, Marcello Anderson Ferreira Batista; CARVALHO, Paulo Cesar Marques de; FERNÁNDEZ RAMÍREZ, Luis Miguel; BRAGA, Arthur Plínio de Souza. Improving solar forecasting using Deep Learning and Portfolio Theory integration. Energy, v. 195, p. 117016, 2020. https://doi.org/10.1016/j.energy.2020.117016pt_BR
dc.identifier.issn0360-5442-
dc.identifier.otherhttps://doi.org/10.1016/j.energy.2020.117016-
dc.identifier.urihttp://www.repositorio.ufc.br/handle/riufc/64548-
dc.description.abstractSolar energy has been consolidated as one of the main renewable energy sources capable of contributing to supply global energy demand. However, the solar resource has intermittent feature in electricity production, making it difficult to manage the electrical system. Hence, we propose the application of Deep Learning (DL), one of the emerging themes in the field of Artificial Intelligence (AI), as a solar predictor. To attest its capacity, the technique is compared with other consolidated solar forecasting strategies such as Multilayer Perceptron, Radial Base Function and Support Vector Regression. Additionally, integration of AI methods in a new adaptive topology based on the Portfolio Theory (PT) is proposed hereby to improve solar forecasts. PT takes advantage of diversified forecast assets: when one of the assets shows prediction errors, these are offset by another asset. After testing with data from Spain and Brazil, results show that the Mean Absolute Percentage Error (MAPE) for predictions using DL is 6.89% and for the proposed integration (called PrevPT) is 5.36% concerning data from Spain. For the data from Brazil, MAPE for predictions using DL is 6.08% and 4.52% for PrevPT. In both cases, DL and PrevPT results are better than the other techniques being used.pt_BR
dc.language.isopt_BRpt_BR
dc.publisherElsevier Ltd. - https://reader.elsevier.com/pt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectSolar forecastpt_BR
dc.subjectArtificial intelligencept_BR
dc.subjectDeep learningpt_BR
dc.subjectPortfolio theorypt_BR
dc.subjectSolar energypt_BR
dc.titleImproving solar forecasting using Deep Learning and Portfolio Theory integrationpt_BR
dc.typeArtigo de Periódicopt_BR
Aparece nas coleções:DEEL - Artigos publicados em revista científica

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2020_art_mafblima.pdf4,21 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.