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a b s t r a c t

Solar energy has been consolidated as one of the main renewable energy sources capable of contributing
to supply global energy demand. However, the solar resource has intermittent feature in electricity
production, making it difficult to manage the electrical system. Hence, we propose the application of
Deep Learning (DL), one of the emerging themes in the field of Artificial Intelligence (AI), as a solar
predictor. To attest its capacity, the technique is compared with other consolidated solar forecasting
strategies such as Multilayer Perceptron, Radial Base Function and Support Vector Regression. Addi-
tionally, integration of AI methods in a new adaptive topology based on the Portfolio Theory (PT) is
proposed hereby to improve solar forecasts. PT takes advantage of diversified forecast assets: when one
of the assets shows prediction errors, these are offset by another asset. After testing with data from Spain
and Brazil, results show that the Mean Absolute Percentage Error (MAPE) for predictions using DL is
6.89% and for the proposed integration (called PrevPT) is 5.36% concerning data from Spain. For the data
from Brazil, MAPE for predictions using DL is 6.08% and 4.52% for PrevPT. In both cases, DL and PrevPT
results are better than the other techniques being used.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Solar energy emerges as one of the main renewable energy
sources capable of contributing to supply global energy demand.
Consequently, photovoltaic (PV) power has increased steadily in
several countries over the past few years, thus becoming an
important component for sustainable development [1]. The inter-
mittency of PV electricity production needs to be addressed to
ensure reliable and proper grid operation [2,3]. Consequently,
additional costs arise for leveling out unforeseen fluctuations in
electricity production [4e6]. Studies show that a 25% improvement
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in PV power output forecast accuracy can lead to a reduction of
1.56% (US$ 46.5 million) in the net generation cost [7].

Hence, solar forecasting is an important area with a great value
to grid integration and solar power plant management [8,9]. Energy
traders in international energy exchange markets, utilities/Trans-
mission System Operators (TSOs) with their network dispatchers,
and also conventional power plant operators (who provide oper-
ating reserve) require reliable information about the electricity
available in the system in the next fewminutes, hours, or days [10].
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(e.g., the choice of a specific prediction methodology over another)
or different factors (e.g., meteorological forecasting errors)
contribute to the final prediction error [11].

The forecasting methods can broadly be categorized into Arti-
ficial Intelligence (AI) and conventional methods. Conventional
methods include the use of stochastic time series and regression-
based approaches to predict energy. The conventional methods
have been widely used in previous works and are capable of
yielding better results while solving linear problems, while AI
methods work well with non-linear outputs [12e15], which is the
case of solar irradiance [16].

In the last decades, several lines of research on AI applications
have been found in the solar resource forecast sector. Among the AI
methods that seek solving the problem of renewable energy fore-
casting, the use of Artificial Neural Networks (ANNs) must be
highlighted [17]. For example, Multilayer Perceptron (MLP) to solar
forecast was used in Refs. [18e20], while Radial Basis Function
(RBF) was used in Refs. [21,22]. Another useful AI methodology is
the Support Vector Machines (SVM) due to the strong theoretical
base and high generalization capacity. Since then, the Support
Vector Regression (SVR) has been developed to work with pre-
dictions [23]. The SVR use for solar forecast can be found in
Refs. [24e26].

One of the emerging themes in the AI field is Deep Learning
(DL), a sub-category of machine learning that relates to DL oppor-
tunities with a capacity for improvement over other AI methods.
Notably, deep neural network architectures provide capabilities to
learn hierarchical features from the data set while providing amore
efficient representation than shallow models and improving
generalization [12,27e31].

In Ref. [28], a DL method is employed for estimating the solar
radiation over 30 stations in Turkey. As a conclusion, DL model
yields very precise and comparable results for estimating daily
global solar radiation. The short-term solar power forecast with DL
is explored in Ref. [30], which proposes the use of this methodology
to predict PV output 15 min earlier.

Table 1 summarizes the performance data of the techniques. It is
worth mentioning that the different methodologies are used with
different types of Statistical Evaluation (SE) and with different
forecasting horizons. The SEs are Mean Absolute Error (MAE), Root
Mean Squared Error (RMSE), Mean Absolute Percentage Error
(MAPE), Mean Percentage Error (MPE) and coefficient of determi-
nation (R2).

Considering the increasing use of PV plants worldwide, this
paper explores the use of AI techniques, such as MLP, RBF, SVR and
DL, as a solar prediction resource. These techniques were chosen
after a vast bibliographical survey, which confirmed that MLP, RBF
and SVR are highly consolidated, with good results in the area of
solar irradiance predictability; DL is characterized as a new trend,
Table 1
Comparison of AI used for solar forecast.

TECHNIQUE SE RESULT SE HORIZON PLACE YEAR

[18] MLP MAE 2.75% 24 h ITAa 2010
[19] MLP RMSE 32.75 W/m2 1 h SAUa 2018
[20] MLP MAE 65.2 W/m2 5 min USAa 2016
[21] RBF MAPE 5.44% 1 month USAa 2015
[22] RBF RMSE 0.0667 W/m2 1 day PSEa 2016
[24] SVR MAPE 8.94% 1 month DZAa 2016
[25] SVR MAE 33.7% 1 h USAa 2013
[26] SVR MAE 0.9726 1 month INDa 2017
[28] DL R2 0.98 1 day TURa 2018
[30] DL RMSE 2.1 kW 15 min USAa 2019

a ITA: Italy; SAU: Saudi Arabia; USA: United States; PSE: Palestinian Territories;
IND: India; DZA: Algeria; TUR: Turkey.
having an ability to generalize. Hence, the four techniques can be
compared and the DL improvement ability can be verified.

In addition to the application and comparison of the above-
mentioned solar forecasting techniques, a new strategy of inte-
grating these techniques is herein proposed in order to reduce
forecasting errors and to compare and prove the improvement of
forecasting results of techniques working together. The proposed
integration, herein called Forecast based on Portfolio Theory
(PrevPT), uses as fundament the Portfolio Theory (PT). PT has the
ultimate goal of providing a method to define the penetration
percentage of each asset in order to increase financial returns.
Hence, PT proposes to achieve the same profits, or greater profits,
by combining investment assets [4,32].

The proposed PrevPT develops a new AI integration topology
based on adaptive structural use and also adaptive weights of the
MLP, RBF, SVR and DL, integrating them through the interconnec-
tion points defined by this adaptation in order to obtain smaller
forecast errors. With the diversification of forecast assets, it is ex-
pected that when one of the assets obtains negative signal pre-
diction errors, another, or other assets, complement with a counter-
sign value, so that there is a complete or partial error cancellation.

Over the past few decades, several research lines have been
found about PT applications in the energy planning sector as well as
the design of energy security policies and analysis of investment in
renewable power generation [4,33e38], although, to the best of the
authors’ knowledge, no research about the use of PT for the inte-
gration of different forecasting techniques of intermittent energy
resources was found. PrevPT, as a strategy developed herein to
improve the predictability of intermittent energy resources with AI
integration, is an innovative contribution.

PrevPT is proposed as a contribution with beneficial character-
istics in comparison to other integration techniques, such as: sim-
ple implementation and low computational cost due to the use of
known statistical tools, which are improvements with regard to
techniques such as Bayesian Model Averaging and Decision Trees,
which use their own complex equations [39]; ability to improve the
results in relation to isolated techniques, besides applying different
weights according to asset performance, thus enhancing the Equal
Weights technique [40].

As a methodology application, solar irradiation data and
ambient temperature from Fortaleza/Brazil (latitude: �03�430,
longitude: �38�320, elevation: 21 m (68.90 ft)) and from Algeciras/
Spain (latitude: 36�130, longitude: �5�45’, elevation: 13 m
(42.65 ft)) are used.
2. Methodology

2.1. Data collection

To better understand solar resource behavior, solar irradiance
and ambient temperature data from Algeciras, Spain and from
Fortaleza, Brazil are considered. Irradiance and ambient tempera-
ture data from Spain is obtained using the Photovoltaic
Geographical Information System (PVGIS) of the European Com-
mission/Institute for Energy and Transport (IET). Solar irradiance
and temperature data are collected and stored in electronic
spreadsheets in 1-h intervals. Data collection period is from January
2007 to December 2016, totaling ten years of collection and
resulting in 87,672 solar irradiance and ambient temperature
measurements. For the AI training, 8 years of all collected data are
used (2921 days; 70,128 measurements).

In Brazil, irradiance data is measured by the Federal University
of Cear�a (UFC) using a pyranometer (NRG Systems, LI-200SZ);
ambient temperature data is obtained using a temperature sensor
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(NRG Systems, # 110S), with a precision of ±1.11 �C and operating
between�40 �C and 52.5 �C. Solar irradiance and temperature data
are collected and stored in electronic spreadsheets in 10-min in-
tervals; stored values are obtained by calculating arithmetic aver-
ages of data processed every 2 s. Data collection period is fromMay
2003 to April 2005, totaling two years of collection and resulting in
61,404 solar irradiance and ambient temperature measurements,
recorded daily from 05:00 a.m. to 06:00 p.m. For the AI training,
70% of all collected data are used (512 days; 43,008measurements).
2.2. Data processing

Data were processed in order to identify outliers, which were
determined using ambient temperature and solar irradiance at the
study site. The data used for the determination of the upper and
lower limits in Fortaleza and in Algeciras came from the National
Institute of Meteorology (INMET) and from the European Com-
mission/IET, respectively. In all cases, outliers were subsequently
replaced by the values of previous measurements showing no
system failure.
2.3. MLP

MLP consists of a neural network organized in layers. Input layer
refers to the data; output layer; and hidden layers (intermediate)
are made up of neurons capable of processing data, resulting in
outputs assigned through inputs excitations and respective
weights. Fig. 1 shows a multi-layered network having three neu-
rons in the input layer, two neurons in the hidden layer and one in
the output layer.

X0, X1 and X2 represent the input variables, wi is weight be-
tween layers and y is the MLP output. The algorithm used for ANN
training is Backpropagation, a generalization of the Widrow & Hoff
delta rule for Adaline training. The name “backpropagation” is used
because error propagation occurs in the reverse direction to the
input signal. Widrow & Hoff Delta Rule generalization is used to
adjust the weights and bias of the MLP network in order to mini-
mize the error between the network output and the desired output
[23].

Among the activation functions of the neurons, the activation
function used for both the hidden neurons layer and the output
layer was the logistic sigmoid, which generates values ranging 0 to
1. Equation (1) represents the function and its derivative, where yj
is the neuron output of the neuron and uj is the weighted sum of all
inputs.

yj ¼
1

1þ exp
�� uj

� (1)

The weights update of both the hidden and the output layer is
given by equations (2) and (3), where w is the weight, a is the
learning rate arbitrated by the programmer, d is the sensitivity and
b is the bias.
Fig. 1. MLP structure.
wðtþ1Þ ¼wðtÞ þ adyiðtÞ (2)

bðtþ1Þ ¼ bðtÞ � ad (3)

2.4. RBF

RBF is an ANN with multiple layers, each with different activ-
ities. The input layer is the ANN connection point with the data
environment to be processed. The second layer is a single layer,
which applies a nonlinear transformation of the input space to a
representation in the space generated by the neuron activations of
the hidden layer. The third layer is the ANN output.

RBF ANN structure is illustrated in Fig. 2, where X0, X1 and X2
represent the input variables, f1 and f2 are the intermediate
neurons, where each neuron has a radial base function, y is the
neuron that represents the ANN output, and wi is the weight of the
connections between intermediate and output layer.

This ANN uses activation functions with local receptive fields, as
previously mentioned [21]. Equations (4) and (5) were considered
using the Gaussian function, where f is the output of each neuron
of the hidden layer, r is the difference between the input x and the
center t, and s is the measure of the curve scattering.

f¼ exp
�
� r2

2s2

�
(4)

r¼ jjx� tjj (5)

RBF output is formed by a single linear neuron, where the sum of
each output of the hidden layer neurons is weighted by their
respective weights, according to (6), where y is the output of ANN
and w the weight.

y¼
X

wjfj (6)

2.5. SVR

The support vector machine (SVM) was developed by Vapnik in
1995 to solve the classification problem. This method was extended
to the regression domain and prediction problems, thus being
called SVR [23].

SVR structure is illustrated in Fig. 3, where X0, X1 and X2
represent the input variables, Kðx; x1Þ and Kðx; x2Þ are the interme-
diate neurons, y is the neuron that represents the AI output, and the
parameters wi are the weights of the connections between inter-
mediate and output layer.

The kernel Kðx; x’Þ, is found through equation (7). Where, x is the
input vector and s is the kernel parameter which defines the
structure of the high dimensional feature space.
Fig. 2. RBF structure.
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Fig. 3. SVR structure.
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Kðx;x’Þ ¼ exp
�
�
����x� x’

����2
2s2

�
(7)

SVR output is formed by a single linear neuron, where the sum
of each output of the hidden layer neurons is weighted by their
respective weights, according to (8), where y is the output of AI and
w the weight.

y¼
X

wj:Kðx;x’Þj (8)
2.6. DL

DL algorithms are machine learning methods based on distrib-
uted representations. DL attempts to learn high-level features in
data by using structures made up of multiple non-linear trans-
formations [41]. For producing solar irradiance predictions, a Long
Short-Term Memory (LSTM) is used [42], which is an artificial
Recurrent Neural Network (RNN) architecture in the field of DL [43].
LSTMs have an advantage over conventional ANNs because of their
property of selectively remembering patterns for long durations of
time, as shown in the process of the LSTM model with five layers
(input layer, hidden layer, context layer, forget layer, and output
layer) in Fig. 4.

Xt is the input of the LSTM; in the case of solar predictability, a
window of historical data of solar irradiance and ambient tem-
perature collected at the mentioned sites, s is a sigmoidal function,
f is a hyperbolic function and the subscripts ðf ; i; z; oÞ represent the
forget layer, the output and the state input for the next stage. Yt is
Fig. 4. Process of the LSTM
the output of the LSTM, which is represented by the equation (9),
where f is the activation function for each stage, W refers to the
weights of each stage (Wf ; Wi; Wz; W0Þ;U also the weight of each
stage (Uf ; Ui; Uz; U0Þ and b is the bias of each stage (bf ; bi; bz; b0Þ.

Yt ¼ f ðW:ht�1 þU:xt þ bÞ (9)

The context layer Ct, has its output defined by equation (10) and
the output of the hidden layer ht, in (11).

ct ¼ ft :ct�1 þ it :zt (10)

ht ¼ ot :fct (11)

2.7. Fine adjustments

Fine adjustments were developed using the increment method
to define the amount of AIs inputs and hidden processing units.
Hence, with each increase in the number of entries, starting from 1,
the AIs were retrained. The algorithm found the validation value for
current situation and stored it in a vector. After the limit of in-
crements was reached, the refiner developed found the optimal
model with five layers.



Fig. 6. PrevPT structure.

Fig. 7. PrevPT simplified structure.
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point, i.e., the ideal amount of system entries that gives a smaller
amount of errors. This methodology is repeated for the four AIs
used in the present research for solar forecasting.

The algorithm is also applied for the refinement of the number
of hidden layer processing units of MLP, RBF and DL. For SVR, the
training structure itself is capable of defining the amount of support
vectors in the hidden layer. The AI refinement algorithm is defined
in (12).

Ao ¼min

m

j¼1

"��Xn
i¼1

����
�
DpðiÞ � DoðiÞ

�
:100

DoðiÞ

����
�
:
1
n

�
j

#
(12)

Where Dp is the predicted data, Do is the observed data, n the total
amount of forecasts and m is the increment limit.

2.8. Prediction errors

To validate the AI results, solar irradiance and temperature data
reserved for the test period are used to characterize the operation
of forecasting techniques and their respective solar resource fore-
casting capabilities. By comparing AI forecasting results and data
collected in the same period, the percentage of errors can be
calculated. Solar prediction errors can be found at different times of
day, i.e., at different levels of solar resource availability [4].

Hence, to adjust forecast errors and, at the same time, take into
account the amplitude of solar resource availability, a filter called
Impact Factor is applied, according to (13) and (14). Dp is the pre-
dicted data, Dm is the measured data, Mr represents the highest
value of the resource under investigation in the period and Fi is the
Factor Impact [4].

Epp ¼
�
Dp � Dm

�
:100

Dm
Fi (13)

Fi ¼
Dm

Mr
(14)

2.9. PrevPT

Asset diversification of an investment, when measured by the
correlation coefficient, can be found by using the (15), in which pxy
is the correlation coefficient between the assets x and y; Covðy; xÞ is
the covariance between x and y; sx is the standard deviation of
asset x; and sy is the standard deviation of asset y.

pxy ¼Covðy; xÞ
sx,sy

(15)

Covariance between x and y is determined by (16), in which xi
represents the asset values of x; x is the average value of asset x; yi is
the asset values of y; y is the average value of asset y; and n is the
amount of asset values.

Covðy; xÞ¼Pn
i¼1Unsupported ðxi� xÞ:ðyi� yÞ

n
(16)

Portfolio risk can be determined by a statistical tool called
standard deviation, which reveals the probability of a given result.
In order to define the percentage of each asset and thereby reduce
forecasting errors, it is necessary to set up an Efficient Frontier
chart. Those boundaries are lines formed by the proportion of
different assets in a portfolio, thus representing graphically how a
particular return can promote the lowest possible risk [4]. Fig. 5
shows the hypothetical situation of a diversified application using
assets A and B as an example of the risk-return analysis curve
(Efficient Frontier).

PrevPT structure is shown in Fig. 6, showing the use of the MLP,
RBF, SVR and DL structures and their integration through the
connection points (p11 to p16). In a later layer, PrevPT creates all
possible combinations between the connections of the previous
layer, and in its self-adaptive structure characteristic, it chooses the
three best combinations from the measurement of their respective
MAPEs. In this step, the combinations are called p1 to p3. In the
PrevPT output, ie p, the two best ones between p1 to p3 are chosen
to format a response of the algorithm.

After the training, in the testing stage, PrevPT structure can be
simplified according to Fig. 7 by assigning final weights for the
interconnection of forecasting techniques.

According to the topology, PrevPT develops parallel integration
of techniques. The data processing steps performed by PrevPT are
presented in Fig. 8 and are divided into: data collection, application
of predictability techniques (MLP, RBF, SVM and DL), calculation
and analysis of prediction errors, design of efficient frontiers for
integration (several layers); presentation of results.

Theweights are defined based on data collected from each study
site, as well as the ability of each technique to accurately predict the
solar availability value of each site. Hence, to obtain the ideal
combination and define the percentage of each forecasting asset,
the technique is simply retrained with data from the new location



Fig. 8. PrevPT data processing steps.
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Fig. 9. Solar irradiance data in January 2007, Algeciras, Spain.
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to obtain the final fixed weight.
Finally, it is worth noting that the proposedmethodology can be

applied to any technology that requires solar resource forecasting
to define the energy available in the system. For example, grid-
connected photovoltaic plants, off-grid photovoltaic powered wa-
ter pumping systems, concentrated solar power units, amongst
others.
3. Results and discussions

3.1. Characteristics of the collected data

10 years of collected data were used in Spain. They are consec-
utive data and all weather conditions in the period (including rainy
and cloudy days) are considered. It is noteworthy that, at the place
of measurement of the Spanish data, it does not snow, and this
issue was not observed, but all four year seasons, different days,
days with more or less solar availability are observed. For Brazil,
consecutive data from 2 years of collected data were used, also
experiencing all the climatic conditions in the period. Therefore,
the techniques were evaluated with different climates and weather
conditions in Spain and Brazil in order to conclude the best tech-
nique under two different climatic conditions, with different solar
resource availability and different locations.

During data collection, Spain showed an average daily solar
Fig. 10. Forecast errors in Janu
irradiation of 5.32 kW h/m2, variance of 941.89 kW/m2 and stan-
dard deviation of 970.51 W/m2, while in Brazil the average daily
irradiation was 6.73 kW h/m2, a variance of 101.33 kW/m2 and
standard deviation of 318.33 W/m2.
3.2. Forecasting errors in Spain

Fig. 9 shows 6 days of solar irradiance in Spain in January 2007
to exemplify sudden fluctuations during measurements as a
consequence of cloud cover.

The predictive errors of the Spanish solar resource were found
using PrevPT. Fig. 10 shows the prediction error behavior for a 300
small sample window extracted from the MLP, RBF, SVR and DL
forecasts (January 1ST, 2015 to January 19TH, 2015). It can be seen in
Fig. 10 that the forecasting errors of each technique were some-
times of opposite signal to the other techniques, which highlights
that this characteristic is beneficial for the integration of the fore-
casting assets with the PrevPT, since theory achieves error cancel-
lation through the ideal combination of predictors. It can also be
observed that, when one of the forecasting techniques had a high
error rate, the other errors were significantly lower. As an example
of this, instant 50 of the displayed window, where MLP had a
42.46% error, while RBF had a 3.83% error, SVRwith 3.87% and Deep
Learning �0.76% error.

The highest solar irradiance value predicted byMLP is 1075.5W/
ary 2015, Algeciras, Spain.



Fig. 11. Observed and forecast data boxplot for Algeciras, Spain.
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m2; the highest value predicted by RBF is 1106.8 W/m2; the highest
value predicted by SVR is 1171.8 W/m2; and the highest value
predicted by DL is 1117.3 W/m2. The highest irradiance value
collected during the period was 1106.83 W/m2. For the MLP Back-
propagation, 32.76% of the forecasts underestimates solar energy
availability, 25.03% produces error 0 (zero) and 42.21% over-
estimates solar resource. The highest negative error is �69.52%,
while the highest positive error is 81.77%; 71.29% of the predictions
show forecasting errors between �10% and 10%. Average fore-
casting error is 1.29% and MAPE for this ANN is 8.06%.

For RBF, 21.13% of the forecasts underestimates solar energy
availability, 25.02% produces error 0 (zero) and 53.85% of the pre-
dictions overestimates solar resource. The highest negative error
is �57.45%, while the highest positive one is 56.96%. 73.27% of the
predictions show forecasting errors between �10% and 10%.
Average prediction error is 2.76% and MAPE for this ANN is 7.16%.

For SVR, 41.78% of the forecasts underestimates solar energy
availability, 25.01% produces error 0 (zero) and 33.21% of the pre-
dictions overestimates solar resource. The highest negative error
is �85.49%, while the highest positive one is 75.77%. 73.71% of the
predictions show forecasting errors between �10% and 10%.
Average prediction error is �0.89% and MAPE for this ANN is 8.34%.

For DL, 44.26% of the forecasts underestimate solar energy
Fig. 12. Developed efficien
availability, 25.02% produces error 0 (zero) and 30.72% of the pre-
dictions overestimate solar resource. The highest negative error
is �63.52%, while the highest positive one is 72.93%. 75.87% of the
predictions show forecasting errors between �10% and 10%.
Average prediction error is 0.36% and MAPE for this ANN is 6.89%.
The MAPE presented by the four prediction techniques represents
the superiority of DL compared to other solar resource forecasting
strategies. Fig. 11 shows the boxplot to represent the variation of
observed and forecast data by the proposed AI techniques.

The interquartile range limits (50% of the data presented) was
27.07W/m2 to 934.47W/m2 for MLP; 165.86W/m2 to 975.16W/m2

for RBF; 70.5 W/m2 to 915.45 W/m2 for SVR; 28.76 W/m2 to
903.17 W/m2 for DL; and 0 W/m2 to 947.5 W/m2 for the data
collected in the trial period. As can be seen, the best results were
achieved by DL. SVR also obtained good results, althoughwith some
negative values, which is impossible to happen.

3.3. Integration of techniques in Spain

For designing the Efficient Frontier, a total of 21 combinations of
each connection is used according to the proposed topology, each
with different weighting, seeking the lowest risk of forecast errors.
The combinations are made from 100% of asset A and 0% of asset B
up to 0% of asset A and 100% of asset B. Changes in the percentages
with steps are made every 5%, which generates the 21 combina-
tions above. To illustrate this, in connection p11, which combines
RBF and DL for example: 21 combinations are assembled with
different percentage levels of each AI used, ranging from 100%
forecast RBF usage and 0% DL usage, later 95% RBF and 5% DL, until
0% RBF forecast usage and 100% DL usage is achieved. The risk and
the prediction error of the combination for efficient frontier plot-
ting are found at each combination. After the integrations, pre-
dictability error risks and predictability errors for each combination
are found. Fig. 12, Fig. 13 and Fig. 14 show the Efficient Frontiers of
PrevPT for the Spanish data.

The first layer of PrevPT is definedwith connection p11 (55% RBF
- 45% DL), connection p12 (45% MLP e 55% DL) and connection p13
(40%MLPe 60% RBF). The second layer is definedwith connection p
1 (60%e p11 40% p 12) and connection p 2 (55%e p11 45% p13Þ.
PrevPT output is defined as 50% p 1 and 50% p2.

Efficient Frontier results show that the optimal portfolio, i. e.,
the combination with best predictability results, is 18% MLP, 45.12%
RBF, 0% SVR and 36.88% DL. This result is achieved by using the
lowest standard deviation found, i. e., the combination, for the
generated portfolio, with results that have the least chance of
showing erratic behavior compared to other study data. PrevPT, in
its characteristic of self-adaptive structure, found the best
t frontiers (first layer).



Fig. 15. Final weights and structure PrevPT Spain.

Fig. 13. Developed efficient frontiers (second layer).
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combination that can be seen in Fig. 15 (a) in its complete structure
and (b) in its simplified form mathematically.

The comparison between the distribution of prediction errors is
shown in Fig. 16.

For PrevPT, 39.76% of the forecasts underestimate and 58.84%
overestimates solar resource. The highest negative error is�34.47%,
while the highest positive one is 38.16%. 83.42% of the predictions
show forecasting errors between �10% and 10%. Average fore-
casting error is 1.61% and MAPE is 5.36%, which defines integration
methodology as an improvement of individual AI results, since MLP
MAPE is 8.06%, RBF MAPE is 7.16%, SVR MAPE is 8.34% and DL MAPE
is 6.69%. Table 2 compares individual AI results, partial and final
integrations made by PrevPT for the Spanish data. The comparison
uses the same database, horizons and forecast period, in order to
generate an SE of the forecasting techniques using the MAPE, MPE
and Range �10 (%) to 10 (%).

In the city of Algeciras, the climate is well defined with four
seasons (winter, spring, summer, autumn). For this reason, the data
collected for these four sessions were separated during the test
period to prove the applicability of the techniques used here under
different climatic conditions. Table 3 compares the MAPEs values
obtained for all sessions. MAPEs values of the different techniques
(AIs and PrevPT) are very similar for all cases.

Fig. 17 presents the Boxplot of the forecasting techniques for the
four situations. The results show that the behavior of the tech-
niques is very similar for all sessions with different solar avail-
ability. This characteristic can be observed comparing the DL
interquartile range limits: 2.79%e0.98% for winter, �2.66%e0.78%
Fig. 14. Developed efficient frontiers (output).
for spring, �2.96%e0.84% for summer and �3.11%e0.63%
for autumn.
3.4. Forecasting errors in Brazil

Fig. 18 shows the prediction error behavior for a 500 small
sample window extracted from the forecasts made with MLP, RBF,
SVR and DL (September 23TH, 2004 to September 30TH, 2004).

The highest solar irradiance value foreseen by MLP is 1011.9 W/
m2, the highest value predicted by RBF is 1203 W/m2, the highest
value predicted by SVR is 1016.2 W/m2 and the highest value pre-
dicted by DL is 1203 W/m2. The highest measured irradiance is
1203 W/m2.

For MLP, 28.57% of the forecasts underestimate solar potential,
7.06% produce error 0 (zero) and 64.37% overestimate solar
resource. The highest negative error is �43.19%, while the highest
positive one is 72.4%. 70.48% of the predictions show forecasting
errors between �10% and 10%. Average forecasting error is 6.01%
and MAPE for this ANN is 8.53%.

For RBF, 81.73% of the forecasts underestimate solar energy
availability, 7.02% produce error 0 (zero) and 11.25% of the pre-
dictions overestimate solar resource. The highest negative error
is �42.58%, while the highest positive one is 36.77%. 75.73% of the
predictions show forecasting errors between �10% and 10%.
Average prediction error is �5.27% and MAPE for this ANN is 6.32%.

For SVR, 36.6% of the forecasts underestimate solar energy
availability, 7.04% produce error 0 (zero) and 56.36% of the pre-
dictions overestimate solar resource. The highest negative error
is �63.49%, while the highest positive one is 58.81%. 72.32% of the
predictions show forecasting errors between �10% and 10%.
Average prediction error is 0.35% and MAPE for this ANN is 8%.

For DL, 47.88% of the forecasts underestimates solar energy
availability, 7.04% produces error 0 (zero) and 45.08% of the



Fig. 16. Forecasting error distributions for the Spanish data.

Table 2
Comparison of the forecasting results for the Spanish data.

MAPE (%) MPE (%) Range �10 (%) to 10 (%)

MLP 8.06 1.29 71.29
RBF 7.16 2.76 73.27
SVR 8.34 �0.89 73.71
DL 6.89 0.36 75.87
MLP/RBF 6.28 2.18 78.09
MLP/SVR 6.88 0.31 73.99
RBF/SVR 6.29 1.48 77.33
MLP/RBF/SVR 5.66 1.7 82.02
MLP/RBF/SVR/DL 5.36 1.61 83.42

Table 3
MAPE for the four sessions in Spain.

Winter Spring Summer Autumn

MLP 8.16% 8.14% 7.8% 8.17%
RBF 7.22% 7.13% 7.23% 7.07%
SVR 8.12% 8.5% 8.07% 8.64%
DL 7.19% 6.67% 6.89% 6.81%
PrevPT 5.54% 5.25% 5.37% 5.27%

Fig. 17. Boxplot for the fo
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predictions overestimates solar resource. The highest negative er-
ror is �62.93%, while the highest positive one is 51.34%. 78.68% of
the predictions show forecasting errors between �10% and 10%.
Average prediction error is 0.06% and MAPE for this ANN is 6.08%.
Fig.19 shows the boxplot to represent the variation of observed and
forecast data by the proposed AIs.

The interquartile range limits was 124.6 W/m2 to 1011.89 W/m2

for MLP, 30.19 W/m2 to 618.14 W/m2 for RBF, 141.76 W/m2 to
678.23 W/m2 for SVR, 107.66 W/m2 to 679.25 W/m2 for DL and
66.04 W/m2 to 711 W/m2 for the data collected in the trial period.
The best results were achieved by DL.
3.5. Integration of techniques in Brazil

After the integrations, predictability error risks and predict-
ability errors for each combination are found. Fig. 20, Fig. 21 and
Fig. 22 show the Efficient Frontiers of PrevPT for the data from
Brazil.

The first layer of PrevPT is defined with connection p11 (25%
MLP - 75% RBF), connection p12 (65% RBFe 35% DL) and connection
ur sessions in Spain.



Fig. 18. Forecast errors in September 2004, Fortaleza, Brazil.

Fig. 19. Observed and forecast data boxplot for Fortaleza, Brazil.

Fig. 20. Developed efficien
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p13 (75% RBF e 25% SVR). The second layer is defined with
connection p 1 (40%e p11 60% p 12) and connection p 2 (50%e p11
50% p13). PrevPT output is defined as 75% p 1 and 25% p 2.

Efficient Frontier results show that the optimal portfolio, i. e.,
the combination with best predictability results, is 10.62% MLP,
70.5% RBF, 3.13% SVR and 15.75% DL. PrevPT, in its characteristic of
self-adaptive structure, found the best combination that can be
seen in Fig. 23 (a) in its complete structure and (b) in its simplified
form mathematically.

The comparison between the distribution of prediction errors is
shown in Fig. 24.

For PrevPT, 73.62% of the forecasts underestimate solar energy
availability and 26.37% overestimate solar resource. The highest
negative error is �30.64%, while the highest positive one is 24.69%.
90.23% of the predictions show forecasting errors between �10%
and 10%. Average forecasting error is �3.05% and MAPE for this
ANN is 4.52%, which defines integration methodology as an
improvement of individual AI results, since MLPMAPE is 8.53%, RBF
MAPE is 6.32%, SVR MAPE is 8% and DL MAPE is 6.08%. Table 4
compares individual AI results, partial and final integrations
made by PrevPT for the Brazilian data. The comparison uses the
same database, horizons and forecast period, in order to generate a
SE of the forecasting techniques.
t frontiers (first layer).



Fig. 23. Final weights and structure PrevPT Brazil.

Table 4

Fig. 21. Developed efficient frontiers (second layer).
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In the city of Fortaleza, the climate can be divided into rainy and
rainless sessions. For this reason, the data collected for these two
sessions were separated during the test period to prove the appli-
cability of the techniques used under different climatic
conditions. Table 5 compares the MAPEs values obtained for both
sessions. MAPEs values of the different (AIs and PrevPT) are very
similar for the rainy and rainless sessions.

Fig. 25 presents the Boxplot of the forecasting techniques for
both situations. The results show that the behavior of the tech-
niques is very similar for both sessions with different solar avail-
ability. This characteristic can be observed comparing the DL
interquartile range limits: 3.69%e2.75% for rainy season
and �3.62%e3.47% for rainless session.

3.6. Discussions

As demonstrated by the MAPE, the techniques obtained satis-
factory results regarding the solar resource forecast. Characteristics
such as higher variance and standard deviation may justify worse
prediction indexes obtained in Spain by almost all techniques. The
worst performancewas obtained by SVR, withMAPE of 8.34% in the
case of Spain and MAPE of 8% in the case of Brazil, which can be
defined as good, considering that these techniques obtained an
average hit rate of 91.66% and 92%, respectively.

DL used for forecasting stands out in comparison to all the
Fig. 22. Developed efficient frontiers (output).
individual forecast techniques (MLP, RBF and SVR). Hence, the use
of DL as solar resource predictor is highly beneficial for the
expansion of PV power; the implementation of this technique al-
lows for significant improvements over the other techniques used
for comparison.

Considering the use of PrevPT for the integration of forecasting
techniques, the methodology managed to find an ideal weighting
for the impact of each of the individual prediction techniques, as
well as in its adaptive structure, was able to disregard some tech-
nique which may be causing negative impacts to a solar resource
Comparison of the forecasting results for Brazilian data.

MAPE (%) MPE (%) Range �10 (%) to 10 (%)

MLP 8.53 6.01 70.48
RBF 6.32 �5.27 75.73
SVR 8 0.35 72.32
DL 6.08 0.06 78.68
MLP/RBF 4.82 �2.45 88.8
MLP/SVR 6.57 3.18 77.71
RBF/SVR 5.3 �3.86 85.82
MLP/RBF/SVR 5.06 �3.28 84.65
MLP/RBF/SVR/DL 4.52 �3.05 90.23

Table 5
MAPE for the rainy and rainless season in Brazil.

Rainless session Rainy season

MLP 8.52% 8.77%
RBF 6.32% 6.16%
SVR 8.01% 7.71%
DL 6.09% 5.59%
PrevPT 4.52% 4.51%



Fig. 24. Forecasting error distributions for the data from Brazil.
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forecasting system. PrevPT, in its final integration and almost all
partial integrations, obtained the best indices in the evaluation
criteria than the other predictive methods, with final MAPE of
5.36% in the case of Spain and with MAPE of 4.52% in the case of
Brazil.

The techniques obtained an average hit rate of 91.66%e95,48%,
highlighting the very high quality of the techniques and methods
employed.
4. Conclusions

DL used for solar prediction obtained better results than the
MLP, RBF and SVR techniques. Regarding PrevPT, errors resulting
from the integration of forecast techniques had a better perfor-
mance than the individual errors of each asset. To compare:

� MAPE for MLP, RBF, SVR and DL in Spain was 8.06%, 7.16%, 8.34%
and 6.89%, respectively; as for PrevPT, it was 5.36%. In Brazil,
Fig. 25. Boxplot for the rainy an
MAPE for MLP, RBF, SVR and DL was 8.53%, 6.32%, 8% and 6.08%,
respectively; for PrevPT was 4.52%;

� The range �10%e10% for MLP, RBF, SVR and DL in Spain was
71.29%, 73.27%, 73.71% and 75.87%, respectively; for PrevPT, it
was 83.42%. In Brazil, the range�10%e10% forMLP, RBF, SVR and
DL was 70.48%, 75.73%, 72.32% and 78.68%, respectively; for
PrevPT was 90.23%;

Hence, the use of DL as a solar resource predictor has a signifi-
cant gain in relation to other individual forecasting methods.

The use of PrevPT is proposed as a methodology to find ideal
impacts of AIs. The proposed PrevPT is able to establish the inte-
gration of four distinct AI forecastingmethods, thus determining an
optimal participation of each prediction technique, aiming to
reduce predictability errors. It can be concluded that PrevPT is a
tool with significant positive impacts for better solar energy man-
agement, which can be subjected to different climatic conditions,
with different solar resource availability and different locations, as
presented and tested herein.
d rainless season in Brazil.
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