Por favor, use este identificador para citar o enlazar este ítem:
http://repositorio.ufc.br/handle/riufc/60362
Tipo: | Dissertação |
Título : | Análise de desbalanceamento de turbina eólica em escala utilizando rede neural de base radial como classificador |
Título en inglés: | Scaled wind turbine unbalance analysis using radial-based neural network as classifier |
Autor : | Nogueira, Tiago de Oliveira |
Tutor: | Andrade, Carla Freitas de |
Co-asesor: | Moura, Elineudo Pinho de |
Palabras clave : | Análise de vibração;DFA;RNBR;Turbina eólica |
Fecha de publicación : | 2021 |
Citación : | NOGUEIRA, Tiago de Oliveira. Análise de desbalanceamento de turbina eólica em escala Utilizando rede neural de base radial como classificador. 2021. 90f. Dissertação (Mestrado em Engenharia Mecânica) – Universidade Federal do Ceará, Centro de Tecnologia, Programa de Pós-Graduação em Engenharia Mecânica, Fortaleza, 2021. |
Resumen en portugués brasileño: | Devido ao aumento da preocupação com questões ambientais, métodos sustentáveis de produção energética têm ganhado cada vez mais espaço, e com isso, a melhoria da eficiência dessas tecnologias, sobretudo a eólica – devido ao seu poder de produção e baixo custo de produção – é de suma importância. Esta presente dissertação realiza um estudo dos sinais de vibração extraídos de uma turbina eólica em escala. Massas de 0,5 g, 1,0 g e 1,5 g foram adicionadas às pontas de uma e duas pás, simulando possíveis problemas, como erosão ou acúmulo de gelo, além da condição normal, onde as três pás e o sistema estavam balanceados. O sistema funcionou em três rotações diferentes: 900 rpm, 1200 rpm e 1500 rpm. Usou-se a análise de flutuações destendenciadas (DFA) para o pré-processamento dos sinais originais. Em seguida, os vetores foram classificados pelo modelo de Rede Neural de Base radial, uma técnica de reconhecimento de padrões com treinamento supervisionado. O classificador alcançou um resultado de 98,83%, 98,15% e 96,92%, para as rotações de 900 rpm, 1200 rpm e 1500 rpm, respectivamente, no reconhecimento dos padrões em estudo, sendo capaz de diferenciar, com índices maiores que 96%, as condições normais de operação das condições de desbalanceamentos definidas. Além disso, comparado a outros métodos já utilizados para o mesmo fim, os resultados foram próximos, sendo inferior para 900 rpm, em 0,46%; superior em 4%, para 1200 rpm; e inferior em 1% para 1500 rpm. Por fim, conclui-se a capacidade do classificador estudado na identificação de sinais desconhecidos, sendo importante na identificação de possíveis defeitos que possam surgir nas pás de uma turbina eólica, a partir dos resultados obtidos são muito promissores e podem dar contribuições relevantes no desenvolvimento de um sistema de detecção e classificação de defeitos em pás de aerogeradores. |
Abstract: | Due to the increased concern with environmental issues, sustainable methods of energy production have gained more and more space, and with this, the improvement in the efficiency of these technologies, especially wind power - due to its production power and low production cost - is of short importance. This present dissertation performs a study of the vibration signals extracted from a scaled wind turbine. Masses of 0.5 g, 1.0 g, and 1.5 g were added to the tips of one and two blades, simulating possible problems such as erosion or ice accumulation, in addition to the normal condition, where the three blades and the system were balanced. The system ran at three different speeds: 900 rpm, 1200 rpm, and 1500 rpm. Extended fluctuation analysis (DFA) was used for the pre-processing of the original signals. Then, the vectors were classified by the Radial Base Neural Network model, a pattern recognition technique with supervised training. The classifier achieved a result of 98.83%, 98.15%, and 96.92%, for the rotations of 900 rpm, 1200 rpm, and 1500 rpm, respectively, in the recognition of the patterns under study, being able to differentiate, with indices greater than 96%, the normal operating conditions of the defined imbalance conditions. Furthermore, compared to other methods already used for the same purpose, the results were similar, being lower for 900 rpm, at 0.46%; 4% higher for 1200 rpm; and lower by 1% for 1500 rpm. Finally, the capacity of the classifier studied in the identification of unknown signals is concluded, being important in the identification of possible defects that may arise in the blades of a wind turbine, from the results obtained are very promising and can make relevant contributions in the development of a system for the detection and classification of defects in wind turbine blades. |
URI : | http://www.repositorio.ufc.br/handle/riufc/60362 |
Aparece en las colecciones: | DEME - Dissertações defendidas na UFC |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
2021_dis_tonogueira.pdf | Dissertação de Tiago de Oliveira Nogueira | 3,68 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.