Please use this identifier to cite or link to this item: http://repositorio.ufc.br/handle/riufc/58345
Type: Tese
Title: Modelo de análise de sentimentos com base na estrutura linguística da sentença
Title in English: Model of sentiment analysis based on the linguistic structure of the sentence
Authors: Silva, Arnoldo Nunes da
Advisor: Souza, José Neuman
Co-advisor: Souza, Osvaldo de
Keywords: Análise de Sentimentos;Processamento de Linguagem Natural;Linguística Computacional
Issue Date: 2021
Citation: SILVA, Arnoldo Nunes da. Modelo de análise de sentimentos com base na estrutura linguística da sentença. 2021. 97 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal do Ceará, Fortaleza, 2021.
Abstract in Brazilian Portuguese: A Análise de Sentimentos (SA) é uma área do Processamento de Linguagem Natural que permite detectar a presença de polaridade positiva, negativa ou neutra em um texto. O SA tornou-se um elemento de maior interesse devido ao aumento da geração de dados a partir da internet e aos esforços necessários para processar esse volume de dados. Diante dessa demanda, busca-se obter resultados precisos que permitam a interpretação automática do sentimento inserido no texto. Vários métodos podem ser aplicados nesta tarefa, porém, nesta tese se destacam os aspectos e desafios em explorar a estrutura linguística da frase, para os quais as soluções são direcionadas a regras com as propriedades da gramática que descrevem a linguagem natural. Vale ressaltar que estudos de soluções baseadas em regras também são motivados pela exclusão de custos que envolvem treinamento de dados. Uma revisão do estado da arte, mostra que existem avanços nos estudos da linguística formal que contribuem para a linguística computacional, como regras de uma descrição sintática do português brasileiro já disponível na literatura, e não foram explorados para análise de sentimento. Em particular, trabalhos com modelos restritos de regras e o uso de parsers foram detectados para definir as classes gramaticais, a estrutura da sentença e as relações de dependência. No entanto, nenhuma solução foi encontrada envolvendo uma gramática construída para descrever uma linguagem natural incorporada a um parser que analisa a estrutura da frase caracterizada especificamente pelo sentimento. O principal resultado obtido com esta tese foi um novo modelo de análise de sentimento baseado em uma gramática regular expansível definida por regras de composição semântica. Assim, foi desenvolvido um parser que identifica estruturas de sentenças caracterizadas ou não com polaridade positiva ou negativa. Para atender a essa solução, um conjunto de relações de sentimento entre categorias gramaticais foi estudado e desenvolvido a partir da descrição formal da estrutura da frase. Foi implementado um protótipo para testar a aplicação do modelo em corpora de sentenças e posteriormente para uma avaliação comparativa dos resultados, que apresentaram índices nos mesmos níveis obtidos por outros métodos.
Abstract: Sentiment Analysis (SA) is an area of Natural Language Processing that leads to detect the presence of positive, negative or neutral polarity in a text. SA became an element of greater interest due to the increase of data generation from the internet, and the efforts required to process such volume of data. Due to this demand, there is an endeavour to achieve precise results that will allow the sentiment inserted in the text to be automatically interpreted . Several methods can be applied in this task, however, in this thesis the aspects and challenges in exploring the linguistic structure of the sentence stand out, for which the solutions are directed to rules with the properties of the grammar that describe the natural language. It is worth noting that studies of solutions based on rules are also motivated by excluding costs that involve data training. A review of the state of the art, shows that there are advances in studies of formal linguistics that contribute to computational linguistics, as rules of a syntactic description of Brazilian Portuguese already available in literature, and have not been explored for sentiment analysis. In particular, works with restricted models of rules and the use of parsers were detected to define the parts of speech, sentence structure, and dependency relations. However, no solutions were found involving a grammar constructed to describe a natural language incorporated into a parser that analyzes the sentence structure specifically characterized by sentiment. The main result obtained from this thesis was a new model of sentiment analysis based on an expandable regular grammar defined by rules of semantic composition. Thus, a parser was developed that identifies sentence structures characterized or not with positive or negative polarity. To meet this solution, a set of relations of sentiment between grammatical categories were studied and developed based on the formal description of the sentence structure. A prototype was implemented to test the application of the model in corpora sentences and later for a comparative evaluation of the results, which presented rates at the same levels obtained by other methods.
URI: http://www.repositorio.ufc.br/handle/riufc/58345
Appears in Collections:DCOMP - Teses defendidas na UFC

Files in This Item:
File Description SizeFormat 
2021_tese_ansilva.pdf3,89 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.