Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/58011
Tipo: Dissertação
Título: Uso de imagens Sentinel para estimativa do estoque de carbono e biomassa acima do solo no bioma Caatinga
Título em inglês: Use of Sentinel images to estimate carbon stock and aboveground biomass in Caatinga biome
Autor(es): Lima, Maria Maiany Paiva
Orientador: Costa, Carlos Alexandre Gomes
Coorientador: Araújo, Isabel Cristina da Silva
Palavras-chave: Produtividade primária líquida;Floresta tropical sazonalmente seca;Sentinel-1 e 2;Sensoriamento remoto;Fitossociologia;Primary net productivity;Seasonally dry tropical forest;Sentinel 1 and 2;Remote sensing;Phytosociology
Data do documento: 2021
Citação: Lima, Maria Maiany Paiva. Uso de imagens Sentinel para estimativa do estoque de carbono e biomassa acima do solo no bioma Caatinga. 107 f. Dissertação (Mestrado em Engenharia Agrícola) - Universidade Federal do Ceará, Fortaleza, 2021.
Resumo: A biomassa é um recurso natural vital para funcionamento da biosfera, a quantificação e monitoramento desta é necessária para o melhor planejamento e gestão do seu uso. Os métodos baseados em dados de sensoriamento remoto (SR) para quantificá-la fornecem uma visão sinótica e são aplicáveis a áreas extensas e inacessíveis, cujo desempenho depende das características do sensor e alvo. Diante disso, objetivou-se avaliar o estoque de carbono e a biomassa acima do solo nos estratos da Caatinga, uma Floresta Tropical Sazonalmente Seca (FTSS), a partir de dados de SR e dados obtidos no campo. A metodologia dividiu-se em três etapas: i) determinação da biomassa e estoque de carbono in situ; (ii) análise baseada em dados de sensoriamento remoto do sensor multiespectral MSI/Sentinel-2 e do radar SAR-C/Sentinel-1; e (iii) análise da relação entre dados de campo e SR. A relação foi obtida por meio de regressão linear múltipla gerando modelos empíricos para obtenção de biomassa e estoque de carbono e, com base nesses modelos, foi realizado o mapeamento desses parâmetros. A biomassa lenhosa apresentou forte relação com o diâmetro do caule das árvores e, no que diz respeito aos dados de SR, os melhores preditores foram as bandas red-edge e seus índices derivados. Quanto aos modelos para estimar biomassa lenhosa, o baseado em imagens da estação chuvosa apresentou desempenho superior ao que utiliza imagens da estação seca, cujos coeficientes ajustados foram de 0,78 e 0,53 respectivamente. Porém, ambos resultaram em uma espacialização adequada da biomassa de acordo com o uso do solo e as diferentes fisionomias de vegetação encontradas na área. Quanto à biomassa herbácea, o melhor modelo apresentou coeficiente de determinação ajustado igual a 0,54 com espacialização homogênea e identificação genérica das áreas preservadas e antropizadas. Logo, os modelos gerados foram capazes de predizer a biomassa herbácea e lenhosa para qualquer estação do ano em área de FTSS.
Abstract: Biomass is a vital natural resource for the functioning of the biosphere, its quantification and monitoring are necessary for better planning and management of use. The methods based on remote sensing (SR) data to quantify it provide a synoptic view and they are applicable into large and inaccessible areas, of which performance depends on the characteristics of the sensor and target. Therefore, the objective was to evaluate the carbon stock and aboveground biomass in the strata of the Caatinga, a Seasonally Dry Tropical Forest (FTSS), using SR data and data obtained in the field. The methodology was divided into three stages: i) determination of biomass and carbon stock in situ; (ii) analysis based on remote sensing data from the MSI/Sentinel-2 sensor and the SAR-C/Sentinel-1; (iii) and analysis of the relationship between field and SR data. The relationship was accessed by means of multiple linear regression generating empirical models for obtaining biomass and carbon stock, and based on these models, the mapping of these parameters was carried out. The biomass showed a strong relationship with the diameter of the tree stems and as for the SR data, the best predictors were the red-edge bands and their derived indexes. As for the models for estimating woody biomass, the one based on images of the rainy season showed a better performance than the one using images of the dry season, whose adjusted coefficients were 0.78 and 0.53 respectively. But both resulted in an adequate spatialization of the biomass of according to the use of the soil and the different physiognomies of vegetation found in the area. As for herbaceous biomass, the best model presented an adjusted determination coefficient equal to 0.54 with homogeneous spatialization and generic identification of preserved and anthropized areas. Therefore, the generated models were able to predict the herbaceous and woody biomass for any season in the FTSS area.
URI: http://www.repositorio.ufc.br/handle/riufc/58011
Aparece nas coleções:PPGENA - Dissertações defendidas na UFC

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2021_dis_mmplima.pdf3,98 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.