Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.ufc.br/handle/riufc/56646
Tipo: Dissertação
Título : Regional Models for Prototype-based Classification: A Novel Paradigm
Autor : Drumond, Rômulo Bandeira Pimentel
Tutor: Barreto, Guilherme de Alencar
Palabras clave : Reconhecimento de padrões;Modelos globais e locais;Mapas auto - Organizáveis;Clusterização do SOM;Modelos locais
Fecha de publicación : 2020
Citación : DRUMOND, Rômulo Bandeira Pimentel. Regional models for prototype-based classification: a novel paradigm. 2020. 72f. Dissertação (Mestrado em Engenharia de Teleinformática) – Universidade Federal do Ceará, Centro de Tecnologia, Programa de Pós-graduação em Engenharia de Teleinformática, Fortaleza, 2020.
Resumen en portugués brasileño: O paradigma de classificação global utiliza todo o conjunto de treinamento para produzir um único modelo discriminante para as diversas classes. Alternativamente, a abordagem de classificação local baseada em clusters constrói múltiplos modelos discriminantes usando subconjuntos dos dados de treinamento. Ao considerar esses dois paradigmas como extremos de um espectro de possibilidades, nesta dissertação, é introduzido um novo paradigma de dois estágios para a construção de modelos de classificação de padrões baseados no método da clusterização dos mapas auto-organizáveis (SOM, self-organizing maps) (VESANTO et al., 2000). De acordo com essa técnica, amostras são submetidas ao SOM em um estágio de pré-processamento. Posteriormente, algoritmos de clusterização (e.g. K-médias) são aplicados nos vetores protótipos do SOM com o objetivo de organizá-los em regiões bem definidas. Ao aplicar essa estratégia de dois estágios em dados rotulados, é mostrado como construir modelos de classificação precisos, doravante referidos como classificadores regionais, usando um subconjunto de amostras mapeados a um cluster específico de unidades do SOM. Um abrangente estudo comparativo é realizado para avaliar a eficácia da abordagem proposta em diversos bancos de dados de benchmarking, usando modelos lineares, i.e. classificador de mínimos quadrados com função de base linear (LSC-LBF, least squares classifier with linear basis functions), e não lineares, i.e. máquinas de vetores-suporte de mínimos quadrados (LSSVM, least squares support vector machine) com kernels não lineares. Como passo adicional no treinamento de modelos locais baseados em cluster e regionais, durante a fase de validação do modelo, um conjunto de doze métricas de validação de clusters foi empregado para avaliar suas competências em prever a melhor quantidade de protótipos dado uma função objetivo bem definida. A capacidade das abordagens local e regional de construir funções de decisão não lineares com um conjunto de classificadores lineares é avaliada e o paradigma regional se apresentou como uma alternativa mais esparsa do que a abordagem local, tendo desempenho semelhante enquanto utilizando menos protótipos/modelos.
Abstract: The global classification paradigm uses the entire training set for producing a single discriminating model for distinct classes. Alternatively, the cluster-based local classification approach builds multiple discriminating models using smaller subsets of the training data. By considering these two paradigms as the extremes of a spectrum of possibilities, in this thesis, it is introduced a novel two-stage framework for building pattern classification models based on the clustering of the self-organizing map (SOM) method (VESANTO et al., 2000). According to this technique, data samples are submitted to the SOM as a preprocessing stage. Then, clustering algorithms (e.g. the K-means) are applied to the prototype vectors of the SOM aiming at organizing them in well-defined regions. By applying this two-stage strategy to labeled data, it is shown how to build accurate classifying models, henceforth referred to as regional classifiers, using the subset of samples mapped to a specific cluster of SOM units. A comprehensive comparative study is carried out to evaluate the effectiveness of the proposed approach on several benchmarking data sets, using linear models, i.e. least squares classifier with linear basis functions (LSC-LBF), and nonlinear ones, i.e. least squares support vector machine (LSSVM) with nonlinear kernel functions. As an additional step on the training of cluster-based local and regional models, during the model validation phase, a set of twelve cluster validation metrics was used to assess their ability to predict the best number of prototypes given a well-defined objective function. The capability of the local and regional approaches to building nonlinear decision functions with a set of linear classifiers is assessed and the regional paradigm presented itself as a sparser alternative than the local approach, having similar performance while using fewer prototypes/models.
URI : http://www.repositorio.ufc.br/handle/riufc/56646
Aparece en las colecciones: DETE - Dissertações defendidas na UFC

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
2020_dis_rbpdrumond.pdf4,44 MBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.