Please use this identifier to cite or link to this item: http://repositorio.ufc.br/handle/riufc/56097
Type: Artigo de Evento
Title: Análise de Fotografias de Pílulas por Redes Neurais Convolucionais
Authors: Carneiro, Allan Cordeiro
Lopes, José Gerardo Fonteles
Araújo, Flávio Henrique Duarte de
Silva, Romuere Rodrigues Veloso e
Passarinho, Cornelia Janayna Pereira
Rocha Neto, Jeová Farias Sales
Medeiros, Fátima Nelsizeuma Sombra de
Keywords: CNN;CBIR;Pílulas
Issue Date: 2017
Citation: CARNEIRO, Allan Cordeiro; LOPES, Jose Gerardo Fonteles; ARAÚJO, Flávio Henrique Duarte de; SILVA, Romuere Rodrigues Veloso e; PASSARINHO, Cornelia Janayna Pereira; ROCHA NETO, Jeová Farias Sales; MEDEIROS, Fátima Nelsizeuma Sombra de. Análise de fotografias de pílulas por redes neurais convolucionais. . In: SIMPÓSIO DE INSTRUMENTAÇÃO E IMAGENS MÉDICAS (SIIM'2017), 8º.; SIMPÓSIO DE PROCESSAMENTO DE SINAIS (SPS'2017), 7º.; 29 nov.-01 dez, 2017, São Bernardo do Campo, SP. Anais [...] São Bernardo do Campo, SP. 2017.
Abstract: The automatic recognition of pills through photography may reduce administration medication error and also enable forensic intelligence to establish links among drugs, laboratories, local and international trafficking routes. Considering the remarkable progress and performance of the convolutional neural networks (CNNs) to extract image characteristics, we propose the use of CNNs for automatic recognition of pill images. The results of classification and content-based image retrieval (CBIR) are evaluated quantitatively by the Accuracy and mean average precision (MAP) measures, and qualitatively by cluster visualization of the U-Matrix. The results demonstrated that the LeNet outperformed the pre-trained Inception Resnet on classification and CBIR tests for legal pills, while Inception Resnet outperformed LeNet on illegal pills.
URI: http://www.repositorio.ufc.br/handle/riufc/56097
Appears in Collections:DETE - Trabalhos apresentados em eventos

Files in This Item:
File Description SizeFormat 
2017_eve_accarneiro.pdf2,49 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.