Use este identificador para citar ou linkar para este item:
http://repositorio.ufc.br/handle/riufc/56097
Tipo: | Artigo de Evento |
Título: | Análise de Fotografias de Pílulas por Redes Neurais Convolucionais |
Autor(es): | Carneiro, Allan Cordeiro Lopes, José Gerardo Fonteles Araújo, Flávio Henrique Duarte de Silva, Romuere Rodrigues Veloso e Passarinho, Cornelia Janayna Pereira Rocha Neto, Jeová Farias Sales Medeiros, Fátima Nelsizeuma Sombra de |
Palavras-chave: | CNN;CBIR;Pílulas |
Data do documento: | 2017 |
Citação: | CARNEIRO, Allan Cordeiro; LOPES, Jose Gerardo Fonteles; ARAÚJO, Flávio Henrique Duarte de; SILVA, Romuere Rodrigues Veloso e; PASSARINHO, Cornelia Janayna Pereira; ROCHA NETO, Jeová Farias Sales; MEDEIROS, Fátima Nelsizeuma Sombra de. Análise de fotografias de pílulas por redes neurais convolucionais. . In: SIMPÓSIO DE INSTRUMENTAÇÃO E IMAGENS MÉDICAS (SIIM'2017), 8º.; SIMPÓSIO DE PROCESSAMENTO DE SINAIS (SPS'2017), 7º.; 29 nov.-01 dez, 2017, São Bernardo do Campo, SP. Anais [...] São Bernardo do Campo, SP. 2017. |
Abstract: | The automatic recognition of pills through photography may reduce administration medication error and also enable forensic intelligence to establish links among drugs, laboratories, local and international trafficking routes. Considering the remarkable progress and performance of the convolutional neural networks (CNNs) to extract image characteristics, we propose the use of CNNs for automatic recognition of pill images. The results of classification and content-based image retrieval (CBIR) are evaluated quantitatively by the Accuracy and mean average precision (MAP) measures, and qualitatively by cluster visualization of the U-Matrix. The results demonstrated that the LeNet outperformed the pre-trained Inception Resnet on classification and CBIR tests for legal pills, while Inception Resnet outperformed LeNet on illegal pills. |
URI: | http://www.repositorio.ufc.br/handle/riufc/56097 |
Aparece nas coleções: | DETE - Trabalhos apresentados em eventos |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
2017_eve_accarneiro.pdf | 2,49 MB | Adobe PDF | Visualizar/Abrir |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.