Por favor, use este identificador para citar o enlazar este ítem:
http://repositorio.ufc.br/handle/riufc/52270
Tipo: | Dissertação |
Título : | Predição de defeitos just-in-time em software utilizando inteligência artificial |
Título en inglés: | Defect prediction of just-in-time software using artificial intelligence |
Autor : | Ramos, Ismael Araújo |
Tutor: | Amora, Márcio André Baima |
Palabras clave : | Qualidade de software;Predição de defeitos;Just-in-time;Redes neurais artificiais;Árvore de decisão |
Fecha de publicación : | 2020 |
Citación : | RAMOS, I. A. Predição de defeitos just-in-time em software utilizando inteligência artificial. 2020. 70 f. Dissertação (Mestrado em Engenharia Elétrica e da Computação) - Universidade Federal do Ceará - Campus de Sobral, Sobral, 2020. |
Resumen en portugués brasileño: | Durante o desenvolvimento ou modificação de um software, deve ser garantido que o produto final chegue ao usuário com a menor quantidade de erros possíveis. Modelos de predição de defeitos em software podem ser utilizados para isso. Os principais objetivos deste trabalho são realizar um estudo e apresentar uma proposta de modelo de predição de defeitos Just-In-Time (JIT) em software. Algumas vantagens da abordagem JIT são mais rapidez na análise, melhor aproveitamento de recursos, facilidade de identificação de possíveis áreas do código que estejam defeituosas e facilidade de encontrar o(s) autor(es) das modificações. Nesta dissertação é apresentada uma proposta para a solução do problema de identificação de erros JIT utilizando rede neural artificial (Artificial Neural Network - ANN) e árvore de decisão (Decision Tree – DT). As bases de dados utilizadas como treino, teste e validação apresentam no total 227417 commits divididos em seis projetos de software livre (Bugzilla, Columba, JDT, Mozilla, Platform e Postgres). Os resultados obtidos tanto com a ANN quanto com a DT são em média superiores aos trabalhos de comparação. Serão apresentadas as técnicas utilizadas no desenvolvimento do trabalho, bem como suas similaridades e diferenças com as abordagens anteriores. |
Abstract: | In the development or modification of a software, the product must have least amount of possible errors. Methods of predicting defects in software could be used for this. The principal objectives about this are performance a study and propose a defect prediction software Just-In-Time (JIT). Some advantages of the JIT approach are faster analise, better team utilization, easier identification of possible areas of code that are defective, and ease of finding the author (s) of modifications. In this work we present a proposal of the use of Just-In-Time (JIT) error identification using Artificial Neural Network (ANN) and decision tree (DT). The databases used as training, testing and validation have 227417 commits in total divided into six open source projects (Bugzilla, Columba, JDT, Mozilla, Platform and Postgres). The results obtained with techniques, ANN and DT, are on average higher than the works of comparation. The techniques used in the work development, as well as their similarities and differences with the previous approaches will be presented. |
URI : | http://www.repositorio.ufc.br/handle/riufc/52270 |
Aparece en las colecciones: | PPGEEC - SOBRAL - Dissertações defendidas na UFC |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
2020_dis_iaramos.pdf | RAMOS, I. A. Predição de defeitos just-in-time em software utilizando inteligência artificial. 2020. 70 f. Dissertação (Mestrado em Engenharia Elétrica e da Computação) - Universidade Federal do Ceará - Campus de Sobral, Sobral, 2020. | 1,42 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.