Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.ufc.br/handle/riufc/49735
Tipo: TCC
Título : Busca heurística simbólica para planejamento determinístico
Autor : Silva, Marisa do Carmo
Tutor: Menezes, Maria Viviane de
Co-asesor: Oliveira, Paulo de Tarso Guerra
Palabras clave : Inteligência artificial;Planejamento automatizado;Heurística
Fecha de publicación : 2019
Citación : SILVA, Marisa do Carmo. Busca heurística simbólica para planejamento determinístico. 2019. 49 f. Trabalho de Conclusão de Curso (Graduação em Engenharia de Computação)- Universidade Federal do Ceará, Campus de Quixadá, Quixadá, 2019.
Resumen en portugués brasileño: Planejamento Automatizado é uma subárea da Inteligência Artificial que tem como objetivo o estudo do processo deliberativo de escolha de ações para que um agente inteligente possa atingir suas metas. A solução para um problema de planejamento determinístico é denominada plano, i.e., uma sequência de ações que leva o agente do estado inicial para um estado que satisfaça a meta. A busca por um plano pode ser feita de duas maneiras: progressiva, a partir do estado inicial, tentando alcançar algum estado que satisfaz a meta e; regressiva, a partir do conjunto de estados que satisfazem a meta, tentando alcançar o estado inicial. No entanto, produzir um plano é computacionalmente difícil e, frequentemente, ocorre o problema da explosão do espaço de estados. Na literatura de planejamento automatizado, existem duas abordagens para contornar este problema: (i) a busca heurística e; (ii) a busca simbólica, baseada na representação de estados e ações como Diagramas de Decisão Binária. Este trabalho propõe a implementação e avaliação de uma heurística baseada na busca regressiva simbólica para o algoritmo de busca simbólica A ∗ na tentativa de produzir planos para problemas de planejamento em domínios determinísticos
Abstract: Automated Planning is a subarea of Artificial Intelligence that aims to study the deliberative process of choosing actions so that an intelligent agent can achieve its goals. The solution to a deterministic planning problem is called plan, i.e., a sequence of actions that takes the agent from the initial state to a state that satisfies the goal. The search for a plan can be done in two ways: (i) progressive from the initial state, trying to reach some state that satisfies the goal and; (ii) regressive, from the set of states that satisfy the goal, trying to reach the initial state. However, producing a plane is computationally difficult and the problem of state space explosion often occurs. In the automated planning literature, there are two approaches to circumvent this problem: (i) heuristic search and; (ii) the symbolic search, based on the representation of states and actions as Binary Decision Diagrams. This paper proposes the implementation and evaluation of a symbolic regressive search-based heuristic for the A ∗ symbolic search algorithm in an attempt to produce plans for planning problems in deterministic domains.
URI : http://www.repositorio.ufc.br/handle/riufc/49735
Aparece en las colecciones: ENGENHARIA DE COMPUTAÇÃO-QUIXADÁ - Monografias

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
2019_tcc_mdocsilva.pdf1,17 MBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.