Por favor, use este identificador para citar o enlazar este ítem:
http://repositorio.ufc.br/handle/riufc/49255
Tipo: | Tese |
Título : | Visão computacional aplicada a automação de colhedora multifuncional de hortícolas - alface |
Título en inglés: | Computer vision Applied to horticultural Multifunctional Harvest Automation - lettuce |
Autor : | Gonçalves, Flávio Roberto de Freitas |
Tutor: | Albiero, Daniel |
Palabras clave : | Arducam;Visão estéreo;Redes convolucionais;Colhedora multifuncional;YOLO;Arducam;Stereo vision;Convolutional networks;Multifunctional harvester |
Fecha de publicación : | 2019 |
Citación : | GONÇALVES, Flávio Roberto de Freitas. Visão computacional aplicada a automação de colhedora multifuncional de hortícolas - Alface. 2019. 94 f. Tese (Doutorado em Engenharia Agrícola) - Universidade Federal do Ceará, Fortaleza, 2019. |
Resumen en portugués brasileño: | A automação agrícola tornou-se significativa em nosso país devido à necessidade das empresas nacionais de competirem de modo adequado com empresas estrangeiras e do aumento da produtividade e redução de perdas. Com o uso de recursos de avançada tecnologia como dispositivos eletrônicos embarcados e técnicas de agricultura de precisão e controle de processos,já é possível o aumento da produção. As culturas hortícolas são de grande importância econômica, social e alimentar para a população mundial. O grande desafio atual no setor de mecanização agrícola de hortícolas é a colheita.Para isso o desenvolvimento de um sistema de visão computacional com emprego de processamento de imagem e redes neurais artificiais que permita a identificação de hortícolas e forneça parâmetros de posicionamento a um conjunto atuador robótico, para operações de colheita, atenderia a este desafio. O objetivo do trabalho foi desenvolver um sistema de detecção, que através destes recursos possibilite a detecção de hortícolas e o posicionamento da mesma.Para esta finalidade definiu-se um aparato de captura utilizando câmeras seriais modelo OV2640 com interface de controle ArduCam/Arduino ajustadas em configuração de visão estéreo.A programação do sistema foi feita em C# utilizando a biblioteca EMGU com o uso de algoritmos de aprendizagem profunda(YOLO) e algoritmo de métrica de profundidade por meio de mapa de disparidades para estimação de distância. Como resultado temos a definição do aparato onde foram estabelecidas condições de operação e analisadas o desempenho dos algoritmos de captura de imagens, coletou-se banco de imagens,definiu-se a rede neural artificial e efetuado treinamento com estas imagens para identificação da hortícola da alface, gerou-se o sistema de detecção de objetos, calibrado o módulo de detecção de distâncias e realização ensaios para detecção de alfaces.Avaliando os resultados concluímos ser possível a detecção de hortícolas com o uso do sistema implementado. |
Abstract: | Agricultural automation has become significant in our country due to the need for domestic companies to compete properly with foreign companies and increased productivity and reduced losses. Using advanced technology features such as embedded electronic devices and precision farming techniques and process control, increased production is now possible. Horticultural crops are of great economic, social and food importance to the world's population. The current major challenge in the horticultural agricultural mechanization sector is harvesting. To this end, the development of a computer vision system employing image processing and artificial neural networks that allow the identification of vegetables and provide positioning parameters for a robotic actuator set for harvesting operations would meet this challenge. The objective of this work was to develop a detection system that through these resources enables the detection of vegetables and their positioning. For this purpose a capture apparatus was defined using model OV2640 serial cameras with ArduCam / Arduino control interface set in stereo vision configuration. The programming of the system was done in C # using the EMGU library using deep learning algorithms (YOLO) and depth metric algorithm by means of distance estimation map. As a result we have the definition of the apparatus where operating conditions were established and the performance of the image capture algorithms were analyzed, an image bank was collected, an artificial neural network was defined and training was performed with these images to identify the lettuce horticulture. , the object detection system was generated, the distance detection module was calibrated and lettuce detection tests were performed. Evaluating the results we concluded that it is possible to detect vegetables using the implemented system. |
URI : | http://www.repositorio.ufc.br/handle/riufc/49255 |
Aparece en las colecciones: | PPGENA - Teses defendidas na UFC |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
2019_tese_frdfgoncalves.pdf | 4,07 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.