Use este identificador para citar ou linkar para este item:
http://repositorio.ufc.br/handle/riufc/45941
Tipo: | Dissertação |
Título: | Design and performance enhancement of multi-cluster multi-user massive MIMO-NOMA networks |
Autor(es): | Sena, Arthur Sousa de |
Orientador: | Costa, Daniel Benevides da |
Palavras-chave: | Teleinformática;Sistemas de comunicação sem fio;Antenas (Eletrônica);Multi-polarized antennas;Successive sub-array activation |
Data do documento: | 2019 |
Citação: | SENA, A. S. de. Design and performance enhancement of multi-cluster multi-user massive MIMO-NOMA networks. 2019. 97 f. Dissertação (Mestrado em Engenharia de Teleinformática)-Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2019. |
Resumo: | NOMA (non-orthogonal multiple access) e MIMO (multiple-input multiple-output) massivo são duas tecnologias essenciais para atender os exigentes requisitos da quinta geração (5G) das redes de comunicação sem fio. Especificamente, através de um número massivo de antenas, o MIMO massivo explora o domínio espacial para atender múltiplos usuários em paralelo. A técnica NOMA também serve múltiplos usuários simultaneamente, mas diferentemente do MIMO, a transmissão paralela e realizada através do domínio da potência, em que os usuários utilizam SIC (successive interference cancellation) para efetuar a recepção. A junção de MIMO massivo e NOMA consegue fornecer ganhos de desempenho ainda maiores. No entanto, devido a vários problemas, como pequeno espaçamento entre antenas, alta correlação espacial e desvanecimento profundo em canais sem fio, o desempenho do sistema ainda pode ser degradado e a confiabilidade da comunicação afetada, o que não é desejado nas exigentes redes 5G. Felizmente, foi demonstrado que a instalação de antenas com polaridades ortogonais pode aliviar as limitações de espaço entre as antenas e os problemas de correlação. O uso de estratégias de diversidade também é uma maneira eficaz de mitigar os efeitos prejudiciais dos canais de desvanecimento. Neste contexto, esta dissertação visa melhorar o desempenho de redes MIMO-NOMA massivas através da aplicação de multi-polarização e de técnicas de diversidade. Na primeira parte, projeta-se e avalia-se o desempenho de sistemas multi-cluster MIMO-NOMA massivo equipados com antenas de dupla polarização. Considera-se que uma única estação base (BS, do inglês base station) se comunica com múltiplos usuários em modo downlink e que todos os terminais também são equipados com múltiplas antenas de dupla polarização. Em particular, dois pré-codificadores são propostos: (i) o primeiro deles maximiza o número de grupos de usuários que são atendidos simultaneamente dentro de um cluster; e (ii) o segundo fornece maiores ganhos de desempenho em relação ao primeiro através da exploração de diversidade de polarização. Na segunda parte desta dissertação, propõe-se um novo esquema de diversidade para os sistemas MIMO-NOMA massivo, chamado de ativação sucessiva de sub-arrays (SSAA, do inglês successive sub-array activation). Para o sistema operando com SSAA, considerando um cenário com múltiplos clusters, em que a BS envia símbolos redundantes através de múltiplos sub-arrays para usuários com múltiplas antenas, propõe-se um pré-codificador de baixa complexidade construído apenas com as informações estatísticas do canal. Para todos os sistemas propostos (MIMO-NOMA com dupla polarização e SSAA), realizam-se estudos analíticos aprofundados, nos quais derivam-se expressões em forma fechada para as probabilidades de outage, e obtém-se as respectivas aproximações para altos valores de razão sinal-ruído (SNR, do inglês signal-to-noise ratio). Baseado nas análises assintóticas, as ordens de diversidade dos sistemas são determinadas. Expressões para as somas de taxas ergódicas também são derivadas. Resultados numéricos e de simulação são fornecidos para validar a análise analítica e demonstrar a superioridade de desempenho dos sistemas propostos. |
Abstract: | Non-orthogonal multiple access (NOMA) and massive multiple-input multiple-output (MIMO) have arisen as essential enabling technologies for meeting the demanding requisites of the fifth-generation (5G) of wireless communication networks. Specifically, massive MIMO explores the space domain through a massive number of antennas to serve multiple users in parallel, while NOMA can also serve multiple users simultaneously, but differently from MIMO, the parallel transmission is performed by multiplexing the users in the power domain, in which successive interference cancellation (SIC) is employed for reception. The combination of massive MIMO and NOMA can provide even further performance improvements. However, due to various impairments, such as closely spaced antennas, high spatial correlation, or deep fading in wireless channels, the system performance can still be degraded and the communication reliability impacted, which is not desired in the demanding 5G networks. Fortunately, it has been demonstrated that the installation of co-located orthogonal polarized antennas can alleviate the inter-antenna space limitations and correlation issues. The use of diversity strategies is also an effective way of mitigating the harmful effects of fading channels. In this context, this dissertation aims to enhance the performance of multi-cluster multi-user massive MIMO-NOMA networks through the application of both multi-polarization and diversity techniques. First, we design and evaluate the performance of dual-polarized massive MIMO-NOMA systems, in which a single base station communicates in downlink mode with multiple users, with all terminals being equipped with multiple co-located dual-polarized antennas. In particular, two precoder designs are proposed: (i) the first one aims to maximize the number of user groups that are simultaneously served within a cluster; and (ii) the second approach aims to provide further improvements compared to the first one by exploring polarization diversity. In the second part of this dissertation, we propose a novel successive sub-array activation (SSAA) diversity scheme for a single-polarized massive MIMO-NOMA system, in which we also consider the downlink mode. In this scenario, the base station sends redundant symbols through multiple transmit sub-arrays to multi-antenna receivers, based on which a low-complexity two-stage precoder, that is constructed based only on the long-term channel statistical information, is proposed. For both dual-polarized and SSAA systems, we carry out in-depth analytical studies, in which closed-form expressions for the outage probabilities are derived. High signal-to-noise ratio (SNR) outage approximations are obtained, and the systems diversity orders are determined. The ergodic sum-rates are also derived. Numerical and simulation results are provided to validate the analytical analysis and to demonstrate the performance superiority of the proposed designs. |
URI: | http://www.repositorio.ufc.br/handle/riufc/45941 |
Aparece nas coleções: | DETE - Dissertações defendidas na UFC |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
2019_dis_assena.pdf | 8,52 MB | Adobe PDF | Visualizar/Abrir |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.