Please use this identifier to cite or link to this item:
http://repositorio.ufc.br/handle/riufc/45051
Type: | Tese |
Title: | The geodesic classification problem on graphs |
Title in English: | The geodesic classification problem on graphs |
Authors: | Araújo, Paulo Henrique Macêdo de |
Advisor: | Campêlo Neto, Manoel Bezerra |
Co-advisor: | Corrêa, Ricardo Cordeiro |
Keywords: | Classification;Geodesic Convexity;Polyhedral Combinatorics |
Issue Date: | 2019 |
Citation: | ARAÚJO, Paulo Henrique Macêdo de. The geodesic classification problem on graphs. 2019. 148 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal do Ceará, Fortaleza, 2019. |
Abstract in Brazilian Portuguese: | Definimos e estudamos uma versão discreta do clássico problema de classificação no espaço Euclidiano. O problema em questão é definido em um grafo, onde os vértices não classificados precisam ser classificados levando em consideração a classificação dada para outros vértices. A partição de vértices em classes é baseada no conceito de convexidade geodésica em grafos, como uma substituta da convexidade Euclidiana no espaço multidimensional. Chamamo-lo de Problema de Classificação Geodésica - CG (Geodesic Classification Problem, em inglês) e consideramos duas variantes: duas classes, único grupo e duas classes, multigrupo. Propomos abordagens baseadas em programação inteira para cada versão considerada do problema CG, assim como um algoritmo de branch-and-cut para resolvê-las exatamente. Fizemos também um estudo dos poliedros associados, o que inclue a determinação de algumas famílias de desigualdades que definem facetas e algoritmos de separação. Condições para definição de facetas para a versão único grupo foram traduzidas para a versão multigrupo. Relacionamos nossos resultados com alguns já conhecidos na literatura para a classificação Euclidiana. Finalmente, realizamos experimentos computacionais para avaliar a eficiência computacional e a acurácia da classificação das abordagens propostas, comparando-as com alguns métodos de resolução clássicos para o problema de classificação com convexidade Euclidiana. |
Abstract: | We define and study a discrete version of the classical classification problem in the Euclidean space. The problem is defined on a graph, where the unclassified vertices have to be classified taking into account the given classification of other vertices. The vertex partition into classes is grounded on the concept of geodesic convexity on graphs, as a replacement for the Euclidean convexity in the multidimensional space. We name such a problem the Geodesic Classification (GC) problem and consider two variants: 2-class single-group and 2-class multi-group. We propose integer programming based approaches for each considered version of the GC problem along with branch-and-cut algorithms to solve them exactly. We also carry out a polyhedral study of the associated polyhedra, which includes some families of facet-defining inequalities and separation algorithms. Facetness conditions for the single-group case are carried over to the multi-group case. We relate our findings with results from the literature concerning Euclidean classification. Finally, we run computational experiments to evaluate the computational efficiency and the classification accuracy of the proposed approaches by comparing them with some classic solution methods for the Euclidean convexity classification problem. |
URI: | http://www.repositorio.ufc.br/handle/riufc/45051 |
Appears in Collections: | DCOMP - Teses defendidas na UFC |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2019_tese_phmaraujo.pdf | 2,1 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.