Use este identificador para citar ou linkar para este item:
http://repositorio.ufc.br/handle/riufc/3799
Registro completo de metadados
Campo DC | Valor | Idioma |
---|---|---|
dc.contributor.author | Andrade, Francisco José de | - |
dc.contributor.author | Barbosa, João Lucas Marques | - |
dc.contributor.author | Lira, Jorge Herbert Soares de | - |
dc.date.accessioned | 2012-09-24T15:35:05Z | - |
dc.date.available | 2012-09-24T15:35:05Z | - |
dc.date.issued | 2009 | - |
dc.identifier.citation | ANDRADE, Francisco José ; BARBOSA, João Lucas Marques ; LIRA, Jorge Herbert Soares de. Closed Weingarten hypersurfaces in warped product manifolds. Indiana University Mathematics Journal, Bloomington, Ind., US, v. 58, p. 1691-1718, 2009. | pt_BR |
dc.identifier.uri | http://www.repositorio.ufc.br/handle/riufc/3799 | - |
dc.description.abstract | Given a compact Riemannian manifold M, we consider a warped product ¯M = I ×h M where I is an open interval in R. We suppose that the mean curvature of the fibers do not change sign. Given a positive differentiable function ψ in ¯M , we find a closed hypersurface ∑ which is solution of an equation of the form F(B) = ψ, where B is the second fundamental form of ∑ and F is a function satisfying certain structural properties. As examples, we may exhibit examples of hypersurfaces with prescribed higher order mean curvature. | pt_BR |
dc.language.iso | en | pt_BR |
dc.publisher | Indiana University Mathematics Journal | pt_BR |
dc.rights | Acesso Aberto | pt_BR |
dc.subject | Hipersuperfícies | pt_BR |
dc.subject | Curvatura | pt_BR |
dc.title | Closed Weingarten hypersurfaces in warped product manifolds | pt_BR |
dc.type | Artigo de Periódico | pt_BR |
Aparece nas coleções: | DMAT - Artigos publicados em revista científica |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
2009 _art_jlmbarbosa.pdf | 232,88 kB | Adobe PDF | Visualizar/Abrir |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.