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Closed Weingarten Hypersurfaces in Warped

Product Manifolds

Francisco J. Andrade †∗ João L. M. Barbosa ‡†
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Abstract

Given a compact Riemannian manifold M , we consider a warped prod-
uct M̄ = I ×hM where I is an open interval in R. We suppose that the
mean curvature of the fibers do not change sign. Given a positive differen-
tiable function ψ in M̄ , we find a closed hypersurface Σ which is solution
of an equation of the form F (B) = ψ, where B is the second fundamen-
tal form of Σ and F is a function satisfying certain structural properties.
As examples, we may exhibit examples of hypersurfaces with prescribed
higher order mean curvature.

1 Introduction

Let Mn be a compact Riemannian manifold and let I be an open interval
in R. Given a positive differentiable function h : I → R we then consider
the product manifold M̄ = I ×M endowed with a warped metric

ds2 = dt2 + h2(t) dσ2, (1)

where dσ2 stands for the metric of M . We denote the warped metric
simply by 〈·, ·〉.

Given a differentiable function z : M → I its graph is defined as
the hypersurface Σ whose points are of the form X(u) = (z(u), u) with
u ∈M . This graph is diffeomorphic with M and may be globally oriented
by an unit normal vector field N for which it holds that 〈N, ∂t〉 < 0.
With respect to this orientation, let λ = (λ1, . . . , λn) be the vector whose
components λi are the principal curvatures of Σ, that is, the eigenvalues
of the second fundamental form B = −〈dN,dX〉 in Σ.

Let Γ be an open convex cone with vertex at the origin in R
n and

containing the positive cone. Suppose that Γ is symmetric with respect
to interchanging coordinates of its points. Let f be a positive differen-
tiable concave function defined in Γ. In what follows, f is supposed to be
symmetric in λi and it is required that its derivatives satisfy fi > 0 in Γ.
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We may define a function F in the space of symmetric n× n matrices
S setting F (B) = f(λ) so that it makes sense to write down

F (B(z(u))) = f(λ(X(u)))

when the function z is supposed to be admissible, which means that
λ(z(u)) ∈ Γ for all u ∈M . Finally, given a positive differentiable function
ψ : M̄ → R, it is geometrically relevant to pose the problem of finding an
admissible function z which solves the following equation

F (B(z(u))) = ψ(z(u), u), u ∈M. (2)

Since the second fundamental form B may be written in terms of z and
its first and second derivatives it happens that in analytical terms this
problem is equivalent to prove the existence of solutions for a rather com-
plicated fully nonlinear second order elliptic equation. Naturally, we must
impose some additional conditions on the ambient geometry and on the
structure of f and ψ in order to provide a solution to (2).

Concerning the ambient geometry, we must suppose that the leaves
Mt = {(t, u) : u ∈ M} are mean convex with respect to the inward unit
normal vector field −∂t. This amounts to be equivalent to the condition
that

κ(t) > 0, t ∈ I, (3)

where κ = h′/h. Let δ be a strictly increasing and continuous function
satisfying δ(f) > 0 whenever f ≥ c0 for some positive constant c0. We
suppose that

X

i

fi ≥ δ(f),
X

i

fiλi ≥ δ(f) (4)

in points of the set

Γµ1,µ2
= {λ ∈ Γ : µ1 ≥ f(λ) ≥ µ2},

where µ1 and µ2 are constants with µ2 ≥ µ1 > 0. Denoting ψ0 = inf ψ
we also require that

lim sup
λ→∂Γ

f(λ) ≤ ψ̄0, (5)

for some constant ψ̄0 < ψ0. Finally we denote k = f(κ). Following this
notation, we state our main result.

Theorem 1 Let M̄n+1 = I × Mn be endowed with the warped metric
given by (1). Given t−, t+ with t− < t+, consider the region M̄t−,t+ =
{(t, p) : t− ≤ t ≤ t+}. Suppose that f and h satisfy the conditions (3)-(5)
and suppose that ψ satisfies

a) ψ(t, p) > k(t) for t ≤ t−,

b) ψ(t, p) < k(t) for t ≥ t+,

c) ∂t
`

hψ
´

≤ 0 for t− < t < t+.

Then there exists a differentiable function z : Mn → I for which

F (B(z(u))) − ψ(z(u), u) = 0 (6)

whose graph Σ is contained in the interior of M̄t−,t+ .
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Important particular cases of this theorem concern prescribing the r-th
mean curvatures

`

n

r

´

Hr(λ) = Sr(λ), where Sr are the elementary symmet-
ric functions of the principal curvatures which appear in the expansion of
the characteristic polynomial of B. It may be seen for instance in [13] and
[11] that these functions fit in our hypothesis if we consider the suitable
G̊arding cone. In this sense, the theorem above may be viewed as an ex-
tension of existence results found in previous contributions to the subject,
notably the works [1], [12], [10], [4], [3], [5], [9] and [7]. In these articles,
it is assumed that the variation rate of ψ is controlled in a certain way by
the curvature of ambient geodesic spheres. For instance, this hypothesis
in [3] is stated in terms of our notation as ∂t(tψ) ≤ 0 in M̄t−,t+ . Here,
this hypothesis corresponds to item (c) in the statement of the theorem.

We intend in this paper to show that the powerful elliptic tools pre-
sented in the references above are flexible enough to be used in a very
general geometrical setting. Warped products constitute a large family
of Riemannian manifolds that includes geodesic discs in space forms for
suitable choices of I and h. Its importance as examples is pervasive in
Riemannian Geometry.

The paper is organized as follows. In Section 2, we fix notation and
present some geometric and analytic preliminaries, including the detailed
description of the problem. In Section 3 we show that under the hypothesis
of the theorem, the solutions to the problem remain in the region M̄t−,t+ .
In the next section we compute gradient and Hessian of functions which
resemble the classical height and support functions. Gradient estimates
are obtained in Section 5. The Hessian estimates proved in Section 6 are
largely inspired by the technique in [7]. The degree theoretical approach
to solving the problem is presented in the last section and it is based on
[8], [9] and [7].

2 Preliminaries

In the sequel, we use Latin lower case letters i, j, . . . to refer to indices
running from 1 to n and a, b, . . . to indices from 0 to n. The Einstein
summation convention is used throughout the paper. Exceptions to these
conventions will be explicitly mentioned.

We denote the metric (1) in M̄ by 〈·, ·〉. The corresponding Rieman-
nian connection in M̄ will be denoted by ∇̄. The usual connection in M
will be denoted ∇′. The curvature tensors in M and M̄ will be denoted
by R and R̄, respectively.

Let e1, . . . , en be an orthonormal frame field in M and let θ1, . . . , θn be
the associated dual frame. The connection forms θij and curvature forms
Θi
j in M satisfy the structural equations

dθi + θij ∧ θ
j = 0, θij = −θji , (7)

dθij + θik ∧ θ
k
j = Θi

j . (8)

An orthonormal frame in M̄ may be defined by ēi = (1/h)ei, 1 ≤ i ≤ n,
and ē0 = ∂/∂t. The associated dual frame is then θ̄i = hθi for 1 ≤ i ≤ n
and θ̄0 = dt. A simple computation permits to obtain the connection
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forms θ̄ab and the curvature forms Θ̄a
b that are given by

θ̄ij = θij , (9)

θ̄i0 = (h′/h)θ̄i, (10)

Θ̄i
j = Θi

j − (h′2/h2) θ̄i ∧ θ̄j , (11)

Θ̄i
0 = (h′′/h) θ̄0 ∧ θ̄i, (12)

where ′ denotes the derivative with respect to t. Our convention here is
that

θ̄ji = 〈∇̄ei, ej〉, Θ̄i
j = 〈R̄( · , · )ej , ei〉.

with
R̄(v, w) = ∇̄v∇̄w − ∇̄w∇̄v − ∇̄[v,w].

The frame ēa we just defined is adapted to the level hypersurfaces
Mt = {(t, p); p ∈M}. It follows from (10) that each fiber Mt is umbilical
with principal curvatures

κ(t) = h′(t)/h(t) (13)

calculated with respect to the inward unit normal −ē0 = −∂/∂t. Notice
that according our convention the Weingarten operator for the leaves with
respect to this orientation is defined as

〈∇̄e0, ei〉 = θ̄i0.

Now, consider a smooth function z : M → I . Its graph is the regular
hypersurface

Σ = {X(u) = (z(u), u) : u ∈M},

whose tangent space is spanned at each point by the vectors

Xi = h ēi + zi ē0, (14)

where zi are the components of the differential dz = ziθ
i. The unit vector

field

N =
1

W

`

n
X

i=1

ziēi − hē0
´

(15)

is normal to Σ, where
W =

p

h2 + |∇′z|2. (16)

Here, |∇′z|2 = zizi is the squared norm of ∇′z = ziei. The induced
metric in Σ has components

gij = 〈Xi, Xj〉 = h2δij + zizj (17)

and its inverse has components given by

gij =
1

h2
δij −

1

h2W 2
zizj . (18)

One easily verifies that the second fundamental form B of Σ with compo-
nents (aij) is determined by

aij = 〈∇̄Xj
Xi, N〉 =

1

W

`

− hzij + 2h′zizj + h2h′δij
´
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where zij are the components of the Hessian ∇′2z = ∇′dz of z in M . Now,
we must compute the components aij =

P

k g
ikakj of the Weingarten map

AΣ. To simplify computations, in a fixed point ū ∈ M where ∇′z 6= 0,
we choose e1|ū = ∇′z/|∇′z|. We call this frame a special frame at ū. For
this choice, we obtain dz = z1θ

1 at ū. Since the matrices gij |ū and gij |ū
are diagonal in a special frame, one obtains at ū

a1
1 =

1

W 3

`

− hz11 + 2h′z2
1 + h2h′

´

,

a1
i = −

h

W 3
z1i for 2 ≤ i ≤ n, (19)

aij =
1

h2W

`

− hzij + h2h′δij
´

for 2 ≤ i, j ≤ n.

Special frames are quite useful for computing second and third order co-
variant derivatives of z. By definition the Hessian of z is

zikθ
k = ∇′2z(ei; ·) = dzi − θki zk. (20)

The third derivative of z is defined by

zijkθ
k = ∇′3(ei, ej ; ·) = dzij − θki zkj − θkj zik. (21)

Exterior differentiation of both sides in (20) gives a Ricci identity

zijkθ
j ∧ θk = Θr

i zr (22)

and in particular (for a special frame)

z1ii − zii1 = zi1i − zii1 = Kiz1, (23)

where
Ki = 〈R(e1, ei)ei, e1〉. (24)

Now, we consider an adapted frame field E0 = N,E1, . . . , En in some
open set in Σ. Representing by ωa its dual forms, by ωab its connection
forms and by Ω̄ab its curvature forms, we have the following relations:

dωi + ωij ∧ ω
j = 0, ωij = −ωji , (25)

dωij + ωik ∧ ω
k
j = Ωij , (26)

where Ωij are the curvature forms for Σ. Since Σ is a hypersurface of M̄
then the Gauss equation reads off as

Ωij = Ω̄ij − ωi0 ∧ ω
0
j (27)

The coefficients aij of the second fundamental form are given by Wein-
garten equation

ω0
i = aij ω

j . (28)

In the sequel, one indicates the covariant derivative in Σ by ∇ and by a
semi-colon. Remember that

∇aij = daij − akj ω
k
i − aik ω

k
j = aij;k ω

k (29)

∇aij;k = daij;k − amj;k ω
m
i − aim;k ω

m
j − aij;m ω

m
k

= aij;km ω
m (30)
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The Codazzi equation is a commutation formula for the first derivative of
aij and it is obtained by differentiating (28):

aij;kω
j ∧ ωk = Ω̄0

i . (31)

We also prove using the preceding notation a very useful Ricci identity.

Lemma 2 Let X̄ be a point of Σ and E0 = N,E1, . . . , En be an adapted
frame field such that each Ei is a principal direction and ωki = 0 at X̄.
Let (aij) be the second quadratic form of Σ. Then, at the point X̄, we
have

aii;11 − a11;ii = a11a
2
ii − a2

11aii + R̄i0i0 a11 − R̄1010 aii + R̄i1i0;1 − R̄1i10;i.

The frame field Ea may be obtained from the adapted frame field
N,X1, . . . ,Xn by Gram-Schmidt procedure. Since this last frame depends
only on z and ∇′z, we may conclude that components of R̄ and ∇̄R̄
calculated in terms of the frame Ea depend only on z and ∇′z.

2.1 The prescribed curvature equation

Now we formulate the existence problem analytically. We consider f and
Γ as defined in Section 1. Then, given the second fundamental form (aij)
in Σ we define

F
`

(aij)
´

= f(λ1, . . . , λn),

where λi are the eigenvalues of (aij) calculated with respect to the induced
metric (gij). It is convenient to denote the vector of principal curvatures
(λ1, . . . , λn) by λ. Admissible functions are those ones for which λ always
lies in Γ. We may consider F as a map from S × R

n × R into R in the
variables zij , zi and z.

Thus our problem is to find Σ, graph of an admissible function, so that

F
`

aij(z(u))
´

= ψ(z(u), u), u ∈M,

for some prescribed positive function ψ. We recall that is required that f
satifies

fi =
∂f

∂λi
> 0 (32)

and that f is concave what implies that

X

i

fiλi ≤ f. (33)

We also assume the condition (4) and then we prove using the assumption
(5) and following [3] that

X

i

λi ≥ δ

for λ ∈ Γ such that f(λ) ≥ ψ0. In fact, the set

Γψ = {λ ∈ Γ : f(λ) ≥ ψ0}
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is closed in R
n, convex and symmetric. Thus the closest point in Γψ to

the origin is of the form (λ0, . . . , λ0). This geometric fact implies that any
λ ∈ Γψ is located above the hyperplane

H =
n

λ ∈ R
n :

X

i

λi = nλ0

o

. (34)

Hence, any λ ∈ Γψ is necessarily contained in the convex part of the
cone Γ which is above H . This implies that upper estimates for λ imply
automatically lower estimates.

We proceed by stating some useful analytical properties of F . No-
tice that F is differentiable whenever f is. We denote first and second
derivatives of F respectively by

F ij =
∂F

∂aij
and F ij,kl =

∂2F

∂aij∂akl
. (35)

These derivatives may be easily calculated if we assume that the matrix
(aij) is diagonal with respect to (gij), due to the following lemma.

Lemma 3 If (aij) is diagonal at X̄ then the matrix (F ij) is also diago-
nal with positive eigenvalues fi. Moreover, F is concave and its second
derivatives are given by

F ij,klηijηkl =
X

k,l

fklηkkηll +
X

k 6=l

fk − fl
λk − λl

η2
kl. (36)

Finally one has
fi − fj
λi − λj

≤ 0. (37)

These expressions must be interpreted as limits in the case of multiple
eigenvalues of (aij).

The terms F ij are components of a rank two contravariant tensor. Thus
one has

F ijaij = F ija
j
i

and if the matrix (gij) is assumed to be diagonal at X̄ , then (F ij ) is also
diagonal at that point.

3 Height estimates

Now, we consider, for each s, 0 ≤ s ≤ 1, the map

Ψ(s, t, u) = sψ(t, u) + (1 − s)φ(t)k(t), (38)

where k(t) = f(κ(t)) and φ is a positive real function defined in I , which
satisfies the following conditions:

a) φ > 0,

b) φ(t) > 1 for t ≤ t−,

c) φ(t) < 1 for t ≥ t+,
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d) φ′(t) < 0.

These conditions imply the existence of a unique point t0 ∈ (t−, t+) such
that φ(t0) = 1. Combining the conditions above on φ and the hypothesis
(a) and (b) in the statement of the theorem, one proves

Lemma 4 For ψ as in Theorem 1, φ as prescribed above and the function
Ψ defined in (38), the following statements are true:

i) Ψ(1, t, u) = ψ(t, u) and Ψ(0, t, u) = φ(t)k(t),

ii) Ψ(s, t, u) > 0,

iii) Ψ(s, t, u) > k(t) for t ≤ t−,

iv) Ψ(s, t, u) < k(t) for t ≥ t+.

Furthermore, it is always possible to choose φ satisfying the prescribed
conditions such that:

v) ∂
∂t

Ψ(s, t, u) + κ(t)Ψ(s, t, u) < 0.

For 0 ≤ s ≤ 1, consider the family of equations

Υ(s, z) = F (aij(z)) − Ψ(s, z, u) = 0, z = z(u). (39)

Notice that the constant function t = t0 is solution to the problem corre-
sponding to s = 0. We denote it by z0.

We are able to prove C0 bounds uniform with respect to the parameter
s of this homotopy. More precisely, one proves

Proposition 5 Suppose that ψ satisfies the conditions (a) and (b) in
Theorem 1. If z ∈ C2(M) is a solution of the equation Υ(s, z) = 0 for a
given 0 ≤ s ≤ 1, then

t− < z(u) < t+, u ∈M. (40)

Proof: Let ū be a point of maximum for the function z(u). This exists
by the compactness of M . Let’s assume that z(ū) ≥ t+. Consider then
the leaf Mz(ū) and represent by Σ the graph of z. Observe that Σ and
Mz(ū) are tangent at (z(ū), ū). Furthermore, with respect to the inwards
normal vector common to both hypersurfaces at this point, Σ lies above
Mz(ū). But then the principal curvatures of Σ at this point are greater
than or equal to κ(z(ū)). Thus by the fact that f has positive derivatives
one concludes that

F (aij(z)) ≥ k(z(ū))

at (z(ū), ū) what is in contradiction with (iv) of Lemma (4). Hence z(ū) <
t+. Working in a similar way with the minimum û of z(u) one concludes
that z(û) > t−.

Now, we prove the following uniqueness result.

Proposition 6 Fixed s = 0 there exists an unique admissible solution z0
of the equation Υ(0, z) = 0, namely z0 = t0 where t0 satisfies φ(t0) = 1.
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Proof. That z0 is solution to this problem follows from

Υ(0, z0) = F (aij(z0))) − k(t0) = f(κ(t0)) − k(t0) = 0.

Let z̄ be an admissible solution of Υ(0, z) = 0. This means that

F (aij(z̄)) − φ(z̄)k(z̄) = 0.

Now, let ū ∈ M a minimum point of z̄. At this point, one has ∇′z̄ = 0
and ∇′2z̄ is positive-definite. Since κ = h′

h
one computes explicitly at ū

aij = gikakj = −
1

h2
σikz̄kj +

h′

h
δij

Therefore if we consider a local frame around ū which is orthonormal at
ū and which diagonalizes ∇′2z̄ at this point one obtains

aij(z̄(ū)) ≤ κ(z̄(ū))δij

and since f is increasing with respect to its arguments

φ(z̄(ū))k(z̄(ū)) = F (aij(z̄(ū))) ≤ f(κ(z̄(ū))) = k(z̄(ū)) = φ(t0)k(z̄(ū)).

Hence, since φ is a decreasing function one concludes from the choice of
ū as a minimum point that

z̄(u) ≥ z̄(ū) ≥ t0,

for all u ∈M . In a similar way, one proves that

z̄(u) ≤ t0

for all u ∈M . Thus, one gets z = z0. This finishes the proof.

4 Height and support functions

As before, let Σ be the graph of z. We start by considering the functions
τ : Σ → R and η : Σ → R given by

τ = −h〈N, ē0〉 and η = −

Z

hdt. (41)

The following formulae will be useful later.

Lemma 7 The gradient vector fields of the functions τ and η are

∇η = −h ēT0 , (42)

∇τ = −AΣ(∇η), (43)

and its Hessian forms calculated with respect to given vector fields V,W
in Σ are

∇2η(V,W ) = τB(V,W ) − h′〈V,W 〉, (44)

∇2τ (V,W ) = −〈∇∇ηA
ΣV,W 〉 − 〈R̄(∇η,W )V,N〉

− τ 〈AΣV,AΣW 〉 + h′〈AΣV,W 〉, (45)

Here, ēT0 denotes the tangential projection of the vector field ē0.
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Proof. To simplify the calculations, we consider a local orthonormal
frame ea around a point ū of M and the associated adapted frame field
N,E1, . . . , En along Σ so that ∇̄Ei|X(ū) = 0. Using (14) one has

dη = −hdz = −h〈dX, ē0〉 = −h〈ēT0 , ω
iEi〉

and

dτ = −dh〈N, ē0〉 − h〈∇̄N, ē0〉 − h〈N, ∇̄ē0〉

= −h′θ̄0〈N, ē0〉 + h〈ajiEjω
i, ē0〉 − h〈N, θ̄i0ēi〉

= h〈ajiEjω
i, ē0〉 − h′θ̄0〈N, ē0〉 − h′〈N, θ̄iēi〉

= h〈AΣ(Ei), ē
T
0 〉ω

i − h′〈N, θ̄0ē0 + θ̄iēi〉.

Thus since AΣ is self-adjoint and dX = θ̄0ē0 + θ̄iēi, one gets

dτ = h〈AΣ(ēT0 ), ωiEi〉. (46)

Therefore we conclude that

∇η = −h ēT0 , ∇τ = −AΣ(∇η). (47)

Since τi = h〈ajiEj , ē
T
0 〉, one computes, using ∇Ek

Ej |X(ū) = 0,

τi;k = hk〈a
j
iEj , ē0〉 + h〈aji;kEj , ē0〉 + h〈aji ∇̄Ek

Ej , ē0〉

+ h〈ajiEj , ∇̄Ek
ē0〉

= h′〈ajiEj , θ̄
0(Ek)ē0〉 + h〈aji;kEj , ē0〉 + hajiakj〈N, ē0〉

+ h′〈ajiEj , θ̄
i(Ek)ēi〉

= h′〈ajiEj , Ek〉 + h〈aji;kEj , ē0〉 + hajiakj〈N, ē0〉

= h′aik − aji;kηj − τajiakj .

where we used again that dX = θ̄0ē0 + θ̄iēi and that ηk = −h〈ē0, Ek〉.
Hence, one gets from Codazzi’s equation

∇2τ (V,W ) = h′〈AΣV,W 〉 − 〈(∇WA
Σ)∇η, V 〉 − τ 〈AΣV,AΣW 〉

= h′〈AΣV,W 〉 − 〈(∇∇ηA
Σ)W,V 〉 − 〈R̄(∇η,W )V,N〉

− τ 〈AΣV,AΣW 〉.

Finally, it follows from the expression ηi = −h〈Ei, ē0〉 that

ηi;k = −hk〈Ei, ē0〉 − h〈∇̄Ek
Ei, ē0〉 − h〈Ei, ∇̄Ek

ē0〉

= −h′〈Ei, θ̄
0(Ek)ē0 + θ̄i(Ek)ēi〉 − h aik〈N, ē0〉

= −h′gik + τaik.

Thus we obtain

∇2η(V,W ) = −h′〈V,W 〉 + τ 〈AΣV,W 〉. (48)

This finishes proving the lemma.

One estimates the derivatives of η and ψ as follows. In the sequel
∇i and ∇ij denote covariant derivative in Σ calculated with respect to a
frame adapted to Σ.
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Lemma 8 The functions η and ψ satisfy the following estimates

|∇η| ≤ C, |∇ψ| ≤ C, |∇2ψ| ≤ C (49)

where C are constants depending on ψ, ∇′ψ, ∇′2ψ and on C0 and C1

bounds for z.

Proof. The first estimate follows from the C0 and C1 estimates for z. In
fact, one has ηi = −hzi. In order to prove the remaining estimates, we
observe that

∇iψ = Xi(ψ) = ei(ψ) + zie0(ψ) =: ψi + ziψz.

Thus, using (18) and denoting ψi = ei(ψ) and so on we have

|∇ψ|2 = gijXi(ψ)Xj(ψ) = gij
`

ψi + ziψz
´`

ψj + zjψz
´

=
1

h2

“

δijψiψj −
zizj

W 2
ψiψj + δijziψjψz −

zizj

W 2
ziψjψz

+ δijzjψiψz −
zizj

W 2
zjψiψz + δijzizjψ

2
z −

zizj

W 2
zizjψ

2
z

”

=
1

h2

“

|∇′ψ|2 −
1

W 2
〈∇′ψ,∇′z〉2 + 2ψz〈∇

′ψ,∇′z〉

− 2
ψz
W 2

|∇′z|2〈∇′ψ,∇′z〉 + ψ2
z |∇

′z|2 −
ψ2
z

W 2
|∇′z|4

”

≤ C(|z|1, |ψ|1, |ψz|).

In a similar way (replacing ψ by ψt = ψz) we prove that

|∇ψz| ≤ C. (50)

One has

XiXj(ψ) = Xi
`

ψj + zjψz
´

= ψi,j + zi,jψz + zjψzi + ziψzj + zizjψzz,

where ψi,j = eiej(ψ) and zi,j = eiej(z). We then choose a geodesic frame
ea around ū ∈ M . In this case it holds that zi,j = ∇′

ijz = zij at ū. Now
using the fact that θ̄ab = 0 at ū, we obtain

∇̄Xj
Xi =

`

dzi(Xj) + h′hθi(Xj)
´

e0 +
h′

h

`

δki θ
0(Xj) + ziθ

k(Xj)
´

ek

=
`

zij + h′hδij
´

e0 +
h′

h

`

zjei + ziej
´

which implies that

〈∇Xj
Xi,∇ψ〉 =

`

zij + h′hδij
´

ψz +
h′

h

`

zjψi + ziψj
´

.

Hence, one obtains

∇ijψ = 〈∇Xj
∇ψ,Xj〉 = ψij + zjψzi + ziψzj + zizjψzz

− h′hδijψz −
h′

h
zjψi −

h′

h
ziψj .

Therefore we conclude that

|∇2ψ| ≤ C(|z|1, |ψ|2, |ψz|1).

This finishes the proof of the lemma.
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5 Gradient estimate

In this section, we prove a priori global estimate for the first derivatives
of z.

Proposition 9 Under the hypothesis of Theorem 1, if z(u) is a solution
of equation (39) for some fixed 0 ≤ s ≤ 1, then |∇′z| < C, where C is a
constant that depends only on t−, t+ and ψ.

Proof. We present the proof for s = 1. There is no essential changes for
0 ≤ s < 1.

Set χ(z) = |∇′z|eAz, where A is a positive constant to be chosen later
on. Let ū be a point where χ attains its maximum. If χ(ū) = 0 then
|∇′z| ≡ 0 and so the result is trivial. Hence, we are going to assume that
χ(ū) > 0. Thus we may define the function lnχ(z) = ln |∇′z|+Az which
also attains its maximum at ū. Hence, fixing a special frame in some
neighborhood of ū one has

0 = χi =
1

|∇′z|
eAzzikz

k + AeAz|∇′z|zi

= eAzzi1 + AeAzz1zi,

which implies by the symmetry zi1 = z1i of the Hessian form that

z11 = −Az2
1 , z1i = 0, i > 1. (51)

where we used the fact that zi|ū = 0 for i 6= 1. Substitution of this into
(19) yields a1i = 0 for i > 1. This implies that the direction e1 at ū is
principal. Then, we may rotate the other vectors e2, . . . , en so that they
are also principal at ū. With this choice we have aij = 0 for i 6= j ate
ū. As a consequence of this, one sees from (19) that zij(ū) = 0 for i 6= j.
Thus, the Hessian of z is diagonal at ū.

Differentiating again the function χ at ū, one obtains (no summation
over the index i)

0 ≥ χi;i = AeAzzizi1 +A2eAzz1z
2
i

+ eAz
„

−
1

z1
z2
i1 + zi1i +

1

z1
z2
ii + Azizi1 + Az1zii

«

.

Hence, one concludes from this inequality that

z111 + A2z3
1 + 3Az1z11 ≤ 0, (52)

zi1i +
1

z1
z2
ii +Az1zii ≤ 0. (53)

Combining the first inequality just above and (51) gives

z111 − 2A2z3
1 ≤ 0. (54)

From (53) and (23) one gets

zii1 ≤ −
z2
ii

z1
− Az1zii −Kiz1 for i > 1 . (55)

12



Now we can start putting all this information together to obtain the
desired estimate. We start by taking the derivative of equation (39) with
respect to the direction e1. Using the fact that the matrix (aij) is diagonal
at u0 and the remarks just after Lemma 3, we obtain:

n
X

i=1

F ii
∂aii
∂z1

z11 +

n
X

i=1

F ii
∂aii
∂z

z1 = ψzz1 −
n

X

i=1

F ii
∂aii
∂zii

zii1. (56)

Taking derivatives of aii, using (19) we obtain

∂a1
1

∂z11
= −

h

W 3
,

∂a1
1

∂z1
= −

3z1
W 2

a1
1 +

4z1h
′

W 3
,

∂a1
1

∂z
=

„

h′

h
−

3hh′

W 2

«

a1
1 +

2

hW 3

`

hh′′ − h′2
´

z2
1

+
1

W 3

`

hh′ + h2h′′
´

and for i > 1

∂aii
∂zii

= −
1

hW
,

∂aii
∂z1

= −
z1
W 2

aii,

∂aii
∂z

= −h′

„

h

W 2
+

1

h

«

aii +
(hh′)′

hW
.

Replacing this into (56) and using (51) and rearranging terms yields

z1

„

3Az2
1

W 2
+
h′

h
−

3hh′

W 2

«

F 1
1 a

1
1

+z1

„

−
4Az2

1h
′

W 3
+

2

hW 3
(hh′′ − h′2)z2

1 +
1

W 3
(hh′ + h2h′′)

«

F 1
1

+z1

„

Az2
1

W 2
− h′

„

h

W 2
+

1

h

««

X

i>1

F ii a
i
i + z1

(hh′)′

hW

X

i>1

F ii

= ψzz1 + F 1
1
h

W 3
z111 +

X

i>1

F ii
1

hW
zii1. (57)

Using (54) and (55) we can estimate the right hand side of (57) by

RHS ≤ ψzz1 + F 1
1

2A2hz3
1

W 3
− Az1

X

i>1

F ii
zii
hW

−
Kiz1
hW

X

i>1

F ii

≤ ψzz1 +Az1
X

i

F ii a
i
i + F 1

1

„

A2hz3
1

W 3
− Az1

h′

W 3
(2z2

1 + h2)

«

−

„

Ah′z1
W

+
Kiz1
hW

«

X

i>1

F ii , (58)
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where we used the expressions of a1
1 and aii given in (19) and the fact that

F ii > 0.
Transposing the term in

P

i>1 F
i
i from the right hand side in (58) to

the left hand side of the equation (57), and adding it with the one that
was already there and finally choosing A so that

Ah′h+ (h′h)′ + min
i
Ki > 0 (59)

results, by the fact that h′ > 0, in a positive term that can be discarded.
Notice that Ki = 〈R(e1, ei)e1, ei〉 does not depend on derivatives of z.
This and the fact that h and its derivatives are uniformly bounded in the
annulus M̄t−,t+ show that we may choose any A ≥ A0 for some A0 which
depends only on t−, t+ and |z|0.

We may estimate the left hand side of the inequality resulting from
(57) after these manipulations as

LHS ≥ z1

„

Az2
1

W 2
−
hh′

W 2
−
h′

h

«

X

i

F ii a
i
i

+ z1

„

2Az2
1

W 2
+

2h′

h
−

2hh′

W 2

«

F 1
1 a

1
1

+
z1
W 3

„

− 4Ah′z2
1 +

2z2
1

h

`

hh′′ − h′2
´

+ hh′ + h2h′′

«

F 1
1 . (60)

Transpose the term with F 1
1 from the right hand side in (58) to the right

hand side in (60) and add it to the one that exists there. Transpose the
term in

P

i F
i
i a
i
i from the right hand side in (60) to the right hand side

of the inequality (58) obtaining

RHS ≤ ψzz1 +Az1
X

i

F ii a
i
i − z1

`Az2
1

W 2
−
hh′

W 2
−
h′

h

´

X

i

F ii a
i
i. (61)

For the left hand side we obtain

LHS ≥ 2z1

„

Az2
1

W 2
+
h′

h
−
hh′

W 2

«

F 1
1 a

1
1 +

z1
W 3

„

2z2
1

h
(hh′′ − h′2)

+ hh′ + h2h′′ +Ah′(−2z2
1 + h2) −A2z2

1h

«

F 1
1 . (62)

Thus, replacing in (62) the expression for a1
1 in (19) and gathering the

resulting expression to (61), one gets

2z1
W 3

„

Az2
1

W 2
+
h′

h
−
hh′

W 2

«

`

Ahz2
1 + 2h′z2

1 + h2h′
´

F 1
1

+
z1
W 3

„

2z2
1

h
(hh′′ − h′2) + hh′ + h2h′′ + Ah′(−2z2

1 + h2) − A2z2
1h

«

F 1
1

≤ ψzz1 +Az1
X

i

F ii a
i
i − z1

`Az2
1

W 2
−
hh′

W 2
−
h′

h

´

X

i

F ii a
i
i. (63)
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Observe that in (63) all coefficients of F 1
1 have uniform lower bounds and

moreover that the first term in the left hand side of (63) is nonnegative.
Thus, it is possibel to consider this inequality as polynomial in A writing
it as

F 1
1

`

aA2 + bA+ c
´

≤ ψ1 + ψzz1 + Az1
X

i

F ii a
i
i

− z1
X

i

F ii a
i
i

`Az2
1

W 2
−
hh′

W 2
−
h′

h

´

, (64)

where a, b e c are coefficients uniformly bounded in terms of the functions
h, h′ e h′′. Thus, we must consider two cases. First, we suppose that F 1

1

is uniformly bounded from zero, i.e., that there exists a constant C > 0
such that F 1

1 ≥ C em Σ. In this case, the coefficient

a =
hz3

1

W 5
(z2

1 − h2)F 1
1 (65)

is necessarily nonpositive, since A may be chosen arbitrarily large in (64).
Thus, it follows that z1(ū) ≤ h(z(ū)) and therefore z1(ū) < h(t+).

The other possibility is that F 1
1 has no strictly positive lower bound.

In this case, it is convenient to write the left hand side in (63) as

F 1
1

“

2
`

A+
h′

h

´

(Ah+ h′)x5 +
`

h′′ −
h′

h
− Ah′ − A2h

´

x3

+
`

h′′ +
h′

h
+Ah′

´

x
”

. (66)

where x = z1
W

. Notice that we may suppose without loss of generality that
x = O(1). Otherwise, there exists some constant α < 1 so that x ≤ α
what implies the estimate

(1 − α2)z2
1 ≤ α2h2.

Thus, fixing A = A0 in (64), the coefficients in x are uniformly bounded
for x = O(1). This implies that the the expression in (64) is O(ε) for some
very small ε > 0. Thus, we conclude using the inequality ψ ≥

P

i F
i
i a
i
i

that (63) may be written as

O(ε)W 2 −
`

ψz +
h′

h
ψ

´

z1W
2 ≤ ψ1W

2 +A0h
2ψ + h′hψ. (67)

The hypothesis (c) in Theorem 1 may be stated as

ψz +
h′

h
ψ ≤ 0. (68)

Then if we choose

ε≪
1

W 2
,

an estimate for W |ū follows from (67).
In both cases, by definition of the function χ, a bound for z1(ū) implies

an uniform bound for ∇′z. This completes the proof of the Proposition 9.
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6 Hessian bounds

This section is devoted to the proof of Hessian estimates. We will show
that the terms of the second fundamental form are bounded by above.
Since we already have C0 and C1 estimates, then this information allow
us to obtain the Hessian estimates.

With this purpose in mind, we define the following function on the
unit tangent bundle of Σ:

ζ̃(u, ξ) = B(ξ, ξ) eϕ(τ)−βη, (69)

where u ∈M , ξ is an unit tangent vector to Σ at (z(u), u), the functions
τ e η are defined in (41), the constant β > 0 will be chosen later and the
real function ϕ is defined as follows. Notice that by definition the function
τ is bounded by constants depending on bounds for z and ∇′z. Hence, it
is possible to choose a > 0 so that τ ≥ 2a. Thus, we define

ϕ(τ ) = − ln(τ − a). (70)

Hence, one has differentiating with respect to τ

ϕ̈− (1 + ǫ)ϕ̇2 =
1

(τ − a)2
−

1 + ǫ

(τ − a)2
= −

ǫ

(τ − a)2
< 0 (71)

and by the choice of a given an arbitrary positive constant C, one has

−(1 + ϕ̇τ ) + C(ϕ̈− (1 + ǫ)ϕ̇2) ≥ Ĉ,

for some positive constant Ĉ depending on bounds for z and ∇′z.
We suppose that the maximum of ζ̃ is attained at a point ū and along

the direction ξ̄ tangent to X̄ = (z(ū), ū). We may choose a geodesic
orthonormal reference frame Ea around X̄ as defined in Section 2 so that
ωki |X̄ = 0. One may rotate this frame in such a way that ξ̄ = E1 at X̄. We
then consider the local function a11 = B(E1, E1). Thus we easily verifies
that the function

ζ(p) = a11 e
ϕ(τ)−βη (72)

attains maximum at X̄. Thus, it holds at ū

0 = (ln ζ)i =
a11;i

a11
+ ϕ̇τi − βηi (73)

and the Hessian matrix with components

(ln ζ)i;j =
a11;ij

a11
−
a11;ia11;j

a2
11

+ ϕ̇τi;j + ϕ̈τiτj − βηi;j

is negative-definite. Thus

F ij(ln ζ)ij =
1

a11
F ija11;ij −

1

a2
11

F ija11;ia11;j + ϕ̇F ijτi;j

+ ϕ̈F ijτiτj − βF ijηij ≤ 0 (74)

It is clear that a11 is the greatest eigenvalue of B and therefore a1i = 0
for i 6= 1. Thus, we may rotate the orthogonal complement of E1 so that
in the resulting frame the matrix (aij) is diagonal at X̄. By Lemma 3, it
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results that (F ij) is also diagonal with F ii = fi. We denote λi = aii(ū)
and choose indices in such a way that

λ1 ≥ λ2 ≥ · · · ≥ λn.

Moreover, we assume without loss of generality that λ1 > 1 at ū. Thus,
according Lemma 3, we have

f1 ≤ f2 ≤ · · · ≤ fn.

From (74) one then gets

X

i

“ 1

λ1
fia11;ii −

1

λ2
1

fi|a11;i|
2 + ϕ̇fiτi;i + ϕ̈fi|τi|

2 − βfiηi;i
”

≤ 0 (75)

Now, we differentiate covariantly with respect to the metric (gij) in Σ the
equation (6) in the direction of E1 obtaining

F ijaij;1 = ψ1

and differentiating again

F ijaij;11 + F ij,klaij;1akl;1 = ψ1;1. (76)

From Ricci identity in Lemma 1 and using the fact that δ(f) ≤
P

i fiλi ≤
f = ψ we have

F ijaij;11 ≤ −λ2
1δ + |R̄1010|ψ +

X

i

`

fia11;ii + λ1fiλ
2
i + λ1fiR̄i0i0

+ fiR̄i0i0;1 − fiR̄1010;i

´

.

Combining this expression and (76) and replacing the resulting expression
in (75) one has

ψ1;1

λ1
+

1

λ1

`

δλ2
1 − ψ|R̄1010 |

´

−
1

λ1
F ij,klaij;1akl;1 −

X

i

fiλ
2
i

−
X

i

fiR̄i0i0 −
1

λ1

X

i

fi
`

R̄i0i0;1 − R̄1010;i

´

+
X

i

“

−
1

λ2
1

fi|a11;i|
2

+ϕ̇fiτi;i + ϕ̈fi|τi|
2 − βfiηi;i

”

≤ 0.

From (44) we have at X̄

β
X

i

fiηi;i = β
X

i

`

τfiaii − h′figii
´

≤ β
`

τψ − h′T
´

,

where T =
P

i fi. From (45) and denoting

R̄ki := 〈R̄(Ek, Ei)Ei, N〉 = Ω̄0
i (Ek, Ei)

and using that ϕ̇ < 0 it holds at X̄ that

ϕ̇
X

i

fiτi;i ≥ −ϕ̇
“

X

i,k

ηkfiaii;k +
X

i,k

ηkR̄kifi
”

− ϕ̇τ
X

i

fiλ
2
i

+ ϕ̇h′ψ

= −ϕ̇
“

X

k

ηkψk +
X

i,k

ηkR̄kifi
”

− ϕ̇τ
X

i

fiλ
2
i + ϕ̇h′ψ.
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Using (49) and estimating the ambient curvature terms by constants Ck
terms one obtains from Lemma 8

−
X

k

ϕ̇
`

ηk(ψk + CkT )
´

+ ϕ̇h′ψ ≥ −|ϕ̇|(C + CT ).

Therefore, we have

ϕ̇
X

i

fiτi;i ≥ −|ϕ̇|(C + CT ) − ϕ̇τ
X

i

fiλ
2
i .

Now, we suppose without loss of generality that

λ1 ≥
1

C

X

i

|Ri0i0;1 −R1010;i|,

for some C > 0. Moreover, supposing that λ1 ≥ 1 one has

−
1

λ1
ψ|R̄1010| ≥ −C and

ψ1;1

λ1
≥ −C

for some positive constant C. Finally one has

−
X

i

fiR̄i0i0 ≥ −T max
i

|R̄i0i0| ≥ −CT.

We then conclude from these inequalities that

−C − CT + δλ1 −
1

λ1
F ij,klaij;1akl;1 −

X

i

fiλ
2
i

−
1

λ2
1

X

i

fi|a11;i|
2 − |ϕ̇|(C + CT ) − ϕ̇τ

X

i

fiλ
2
i

+ϕ̈
X

i

fi|τi|
2 − β

`

τψ − h′T
´

≤ 0. (77)

Finally, we also have from (73) for any ǫ > 0 the inequality

1

λ2
1

fi|a11;i|
2 ≤ (1 +

1

ǫ
)β2fi|ηi|

2 + (1 + ǫ)ϕ̇2fi|τi|
2. (78)

Now, for proceed in our analysis, we consider two cases.

1st Case. In this case, we suppose that λn ≤ −θλ1 for some positive
constant θ to be chosen later.

Replacing the sum of terms in (78) in the inequality (77) and using
Lemma 8 one has after grouping terms in T

δλ1 − C − C|ϕ̇| −
1

λ1
F ij,klaij;1akl;1

−
`

C + C|ϕ′| − h′β + C(1 +
1

ǫ
)β2´

T

−(1 + ϕ̇τ )
X

i

fiλ
2
i +

`

ϕ̈− (1 + ǫ)ϕ̇2
´

X

i

fi|τi|
2 − βτψ ≤ 0.
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Using (43) and the fact that
`

aij
´

is diagonal at X̄ and Lemma 8 we
calculate

X

i

fi|τi|
2 =

X

i

fiλ
2
i |ηi|

2 ≤ C
X

i

fiλ
2
i . (79)

Hence, we get

δλ1 − C − C|ϕ̇| −
1

λ1
F ij,klaij;1akl;1

−
`

C + C|ϕ̇| − h′β +C(1 +
1

ǫ
)β2´

T

+
`

− (1 + ϕ̇τ ) + C(ϕ̈− (1 + ǫ)ϕ̇2)
´

X

i

fiλ
2
i − βτψ ≤ 0. (80)

Now, using the concavity of F we may discard the third term in the left-
hand side of (80) since it is non-negative obtaining

−C1(β) − C2(β)T + δλ1 + Ĉ
X

i

fiλ
2
i ≤ 0,

where C1 depends linearly on β and C2 depends quadratically on β. Since
fn ≥ 1

n
T , we have

X

i

fiλ
2
i ≥ fnλ

2
n ≥

1

n
θ2Tλ2

1.

Thus it follows that

− C1 − C2T + δλ1 + Ĉ
1

n
θ2Tλ2

1 ≤ 0. (81)

This inequality shows that λ1 has an upper bound. In fact, if we assume
without loss of generality that λ1 ≥ C̄ for some positive constant C̄, the
coefficients of the terms in T in (81) have a nonnegative sum. Thus,
discarding these terms, one gets

λ1 ≤
C1

δ
.

2nd Case: In this case, we assume that λn ≥ −θλ1. Hence, λi ≥ −θλ1.
We then group the indices in {1, ..., n} in two sets I1 = {j; fj ≤ 4f1} and
I2 = {j; fj > 4f1}. Using (78) we have for i ∈ I1

1

λ2
1

fi|a11;i|
2 ≤ (1 + ǫ)ϕ̇2fi|τi|

2 +C(1 +
1

ǫ
)(β)2f1.

Therefore, it follows from (77) that

−C −CT + δλ1 −
1

λ1
F ij,klaij;1akl;1 −

`

1 + ϕ̇τ
´

X

i

fiλ
2
i

−
1

λ2
1

X

j∈I2

fj |a11;j |
2 − |ϕ̇|(C + CT ) +

`

ϕ̈− (1 + ǫ)ϕ̇2
´

X

i

fi|τi|
2

−C(1 +
1

ǫ
)β2f1 − β

`

τψ − h′T
´

≤ 0.
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Notice that we had summed up to the inequality the non-positive terms

−(1 + ǫ)|ϕ̇|2
X

i∈I2

fi|τi|
2

Using Lemma 8, one has

|τi|
2 = |λiηi|

2 ≤ Cλ2
i

and as we had seen above one may prove that

−
`

1 + ϕ̇τ
´

X

i

fiλ
2
i +

`

ϕ̈− (1 + ǫ)ϕ̇2´

X

i

fi|τi|
2 ≥ Ĉ

X

i

fiλ
2
i (82)

for some positive constant Ĉ. Thus we have

−C − CT + δλ1 −
1

λ1
F ij,klaij;1akl;1 + Ĉ

X

i

fiλ
2
i

−
1

λ2
1

X

j∈I2

fj |a11;j |
2 − |ϕ̇|(C + CT ) − C

`

1 +
1

ǫ

´

β2f1

−β
`

τψ − h′T
´

≤ 0.

Denoting R̄j1 = Ω̄0
1(Ej , E1) one has by Lemma 3 and the fact that 1 /∈ I2

and using Codazzi’s equation

−
1

λ1
F ij,klaij;1akl;1 ≥ −

2

λ1

X

j∈I2

f1 − fj
λ1 − λj

`

a11;j + R̄j1
´2
. (83)

Following [7], we may verify that choosing θ = 1
2

it holds that for all j ∈ I2
it holds that

−
2

λ1

f1 − fj
λ1 − λj

≥
fj
λ2

1

. (84)

Considering the inequalities (83) and (84) and using (82) one has

−C − CT + δλ1 +
X

j∈I2

fj
λ2

1

a2
11;j + 2

X

j∈I2

fj
λ2

1

a11;jR̄j1

+Ĉ
X

i

fiλ
2
i −

X

j∈I2

fj
λ2

1

a2
11;j − |ϕ̇|(C + CT )

−C(1 +
1

ǫ
)β2f1 − β

`

τψ − h′T
´

≤ 0.

Hence one obtains

−C − CT + δλ1 + 2
X

j∈I2

fj
λ1

(−ϕ̇τj + βηj)R̄j1

+Ĉ
X

i

fiλ
2
i − |ϕ̇|(C + CT ) − C(1 +

1

ǫ
)β2f1

−β
`

τψ − h′T
´

≤ 0.

We now estimate using that ϕ̇ < 0 and that λj ≤ λ1 and −λj ≤ θλ1 < λ1

2
fj
λ1

(−ϕ̇τj)R̄j1 ≥ 2
fj
λ1
ϕ̇|λj ||ηjR̄j1| ≥ 2fjϕ̇|ηjR̄j1|.
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We also may suppose without loss of generality that it holds that

λ1 ≥
3|ηjR̄j1|

h′

for all j ∈ I2. Thus, these inequalities imply that

−C − CT + δλ1 + 2
X

j∈I2

fjϕ̇|ηjR̄j1| − 2
βh′

3
T

+Ĉ
X

i

fiλ
2
i − |ϕ̇|(C +CT ) − C

`

1 +
1

ǫ

´

β2f1

−β
`

τψ − h′T
´

≤ 0.

Since
P

j∈I2
fj ≤ T , |ηjR̄j1| ≤ C, ϕ̇ < 0 one has

−C −
`

C + C|ϕ̇| + 2β
h′

3
− βh′

´

T −C
`

1 +
1

ǫ

´

β2f1 + δλ1 + Ĉf1λ
2
1 ≤ 0.

Choosing β > 0 sufficiently large the term in T is positive and we may
discard it obtaining

− C − C2(β)f1 + δλ1 + Ĉf1λ
2
1 ≤ 0, (85)

where C2 depends quadratically on β. Reasoning as above, one concludes
that this inequality gives an upper bound for λ1.

7 The proof of the Theorem

To prove the theorem we are going to use the degree theory for nonlinear
elliptic partial differential equations developed by Yan Yan Li. We refer
the reader to [8].

In Sections 3, 5 and 6 above, it is proved that admissible C4 function
z which solve the equation Υ(s, z) = 0 for some 0 ≤ s ≤ 1 satisfy the
following bounds

t− < z(u) < t+, u ∈M (86)

and
|z|2 ≤ C (87)

for some positive constant C which depends on n, t−, t+ and ψ. Then the
C4,α estimate for some α ∈ [0, 1] follows from (87) and from the results
of L. C. Evans e N. V. Krylov as stated in Theorem 17.16 in [6]. One has

|z|4,α < C (88)

for some constant C > 0.
Fixed that α we denote by C4,α

a (M) the subset of C4,α(M) consisting
of admissible functions for F and define as in Section 2 the homotopy

Υ(s, · ) : C4,α
a (M) → C2,α(M), 0 ≤ s ≤ 1 (89)

and we consider the family of equations Υ(s, z) = 0. In order to apply
degree theory, we need to prove certain assertions which are intermediate
steps in the method.
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It is easy to see in view of the C0 and C1 estimates that there exists
Ĉ > 0 for which

Ĉ ≤ Ψ(s, z(u), u) ≤
1

Ĉ
, u ∈M, (90)

for 0 ≤ s ≤ 1 and any z ∈ C4,α(M) satisfying (86) and (88). Now, if
z ∈ C4,α

a (M) solves Υ(s, z) = 0 for some 0 ≤ s ≤ 1, then

F (aij(z)) = Ψ(s, z(u), u)

and obviously

Ĉ ≤ F (aij(z(u))) ≤
1

Ĉ
, u ∈M. (91)

However, we may verify that there exists some open bounded set V ⊂ Γ
with V̄ ⊂ Γ such that if

Ĉ ≤ f(λ1(z(u)), . . . , λn(z(u))) ≤
1

Ĉ

then
λ(z(u)) ∈ V. (92)

In particular, by (91) we conclude that the matrix (aij(z)) satisfies

λ(aij(z)) ∈ V. (93)

We then define the open set O in C4,α
a (M) consisting of the admissible

functions satisfying (86), (88) and (93). Thus, our reasoning above shows
that any admissible solution z of Υ(s, z) = 0 for some 0 ≤ s ≤ 1 is
contained in O. In particular, we conclude that

Υ(s, · )−1(0) ∩ ∂O = ∅, 0 ≤ s ≤ 1. (94)

Thus, according to Definition 2.2 in [8] the degree deg(Υ(s, · ),O, 0) is
well-defined for all 0 ≤ s ≤ 1.

Proposition 6 shows that z0 = t0 is the unique admissible solution
to Υ(0, z) = 0 in C4,α

a (M). We must prove that the Frechét derivative
Υz(0, z0) calculated around z0 is an invertible operator from C4,α(M) to
C2,α(M). One computes

Υ(0, ρz0) = F (aij(ρz0)) − φ(ρt0)k(ρt0) = k(ρt0) − φ(ρt0)k(ρt0)

and using the fact that φ(t0) = 1 and that φ′(t0) < 0

Υz(0, z0) · z0 =
d

dρ
Υ(0, ρz0)|ρ=1 = −φ′(t0)k(t0) > 0

On the other hand, since obviously ∇′z0 = 0 and ∇′2z0 = 0, then
Υz(0, z0) · z0 is just a multiple of the zeroth order term in Υz(0, z0). We
conclude that Υz(0, z0) is an invertible negatively elliptic operator.

We finally calculate deg(Υ(1, · ),O, 0). From Proposition 2.2 in [8], it
follows that deg(Υ(s, · ), O, 0) is independent from s. In particular,

deg(Υ(1, · ),O, 0) = deg(Υ(0, · ),O, 0).
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On the other hand, we had just proved that the equation Υ(0, z) = 0 has
an unique admissible solution z0 and that the linearized operator Υz(0, z0)
is invertible. Thus, by Proposition 2.3 in [8] one gets

deg(Υ(0, · ),O, 0) = deg(Υz(0, z0),O, 0) = ±1.

Therefore,
deg(Υ(1, · ),O, 0) 6= 0.

Thus, the equation Υ(1, z) = 0 has at least one solution z ∈ O. This
completes the proof of the theorem.
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