Please use this identifier to cite or link to this item:
http://repositorio.ufc.br/handle/riufc/36614
Type: | Tese |
Title: | Photosynthetic and photorespiratory responses to high H2O2 accumulation triggered by peroxisomal ascorbate peroxidase knockdown and catalase inhibition in rice plants: physiological and proteomic approaches |
Title in English: | Photosynthetic and photorespiratory responses to high H2O2 accumulation triggered by peroxisomal ascorbate peroxidase knockdown and catalase inhibition in rice plants: physiological and proteomic approaches |
Authors: | Lima, Rachel Hellen Vieira de Sousa |
Advisor: | Silveira, Joaquim Albenísio Gomes da |
Keywords: | Peroxidase de ascorbato;Catalase;Estresse oxidativo;Peróxido de hidrogênio |
Issue Date: | 2018 |
Citation: | LIMA, Rachel Hellen Vieira de Sousa. Photosynthetic and photorespiratory responses to high H2O2 accumulation triggered by peroxisomal ascorbate peroxidase knockdown and catalase inhibition in rice plants: physiological and proteomic approaches. 2018. 139 f. Tese (Doutorado em Bioquímica) - Universidade Federal do Ceará, Fortaleza, 2018. |
Abstract in Brazilian Portuguese: | A produção de espécies reativas de oxigênio (ERO) é um processo natural em celulas vegetais. A acumulação excessiva de ERO resulta em danos em processos celulares essenciais, como por exemplo a fotosíntese e a síntese proteica. No entanto, várias evidências têm apontado para o envolvimento de ERO em processos de sinalização. Entre elas, o peróxido de hidrogênio (H2O2) é considerado a principal molécula sinalizadora, visto que ele possui longa meia vida e pode migrar para diferentes compartimentos celulares. Diversos trabalhos destacam o papel de sinalização do H2O2 na tolerância ao estresse oxidativo. Os peroxisomos são o principal local de produção de H2O2, através da fotorrespiração. Por isso, há muitos antioxidantes enzimáicos e não enzimáicos presentes nessa organela e, dentre eles, a catalase (CAT) se destaca como o mais importante na remoção de H2O2. A ausência de CAT resulta em diversos danos para o metabolismo vegetal, principalmente redução no crescimento e na eficiêncica da fotossíntese. O ciclo ascorbato/glutationa (ASC/GSH) é outro sistema eficaz na remoção de H2O2, por meio da enzima ascorbato peroxidase (APX). Este ciclo está presente em vários compartimentos celulares, inclusive nos peroxissomos. No entanto, pouco se conhece acerca do papel da isoforma peroxisomal de APX (pAPX). Já é conhecido que o silenciamento da APX4, uma isoforma de pAPX, em plantas de arroz induz menor sensibilidade a inibição da CAT. Entretanto, ainda não é completamente compreendido como a ausêcia de APX nos peroxissomos induz tal resposta favorável. Portanto, abordagens proteômicas e fisiológicas foram utilizadas neste trabalho para avaliar quais sistemas antioxidantes são acionados por plantas de arroz silenciadas em APX4 com atividade de CAT inibida e quais as consequências na eficiência fotossintética. Foi observado que nesssas condições plantas APX4 apresentaram elevada resiliência da fotossíntese e acumulação de proteínas do metabolismo antioxidante, principalmente as do ciclo ASC/GSH. Adicionalmente, foi avaliado o envolvimento da fotorrespiração no desempenho fotossintético de plantas APX4. A maior integridade da maquinaria fotosintética em plantas APX4 sob alta fotorrespiração foi associada a um maior fluxo fotorrespiratório e acumulação de proteínas antioxidantes nos cloroplastos. Em conclusão, o silenciamento de APX4 aciona um proccesso de sinalização que induz uma eficiente resposta antioxidante à acumulação de H2O2 peroxissomal, através de diferentes mecanismos de proteção. Esta resposta antioxidante protege o aparato fotossintético dos efeitos tóxicos causados por altos níveis de H2O2. Os resultados obtidos neste trabalho auxiliam no entendimento do papel da isoforma peroxisomal de APX no processo de sinalização por H2O2 peroxisomal. |
Abstract: | Synthesis of reactive oxygen species (ROS) is a natural process in plant cells. The excessive ROS accumulation implies in damage for important cellular processes, such as photosynthesis and protein synthesis. However, several evidences have shown the role of ROS as signaling molecules. Among them, hydrogen peroxide (H2O2) is considered the main signaling molecule, since it has a relative high half-life and can migrate into different cellular compartments. Several works have reported H2O2 signaling inducing tolerance to oxidative stress. Peroxisome is the main site of H2O2 production, by photorespiration. Many antioxidants act in the H2O2 detoxification in peroxisomes and catalase (CAT) is the most important of them. The absence of CAT results in several damages for plant metabolism by excessive H2O2 accumulation, such as strong impairment in growth and photosynthesis. The H2O2 detoxification by ascorbate/glutathione cycle, through the enzyme ascorbate peroxidase (APX), is also an important H2O2 scavenger. This cycle is present in many cellular compartments, including peroxisomes. However, the role of peroxisomal ascorbate peroxidases (pAPX) is still unclear. It has shown that APX4 knockdown, a pAPX isoform, triggers less sensibility to CAT inhibition in rice plants. Nevertheless, it is not completely understood how pAPX knockout induces this favorable outcome. In the present study, proteomic and physiological approaches were utilized to evaluate which antioxidant systems are triggered by pAPX-knocked-down plants upon CAT inhibition and how this impacts the photosynthetic performance. High photosynthesis resilience and accumulation of protein from antioxidant metabolism, mainly the ascorbate/glutathione cycle, were observed in APX4-knocked-down plants (APX4) under inhibition of CAT. Additionally, the participation of photorespiration in photosynthesis resilience of APX4 plants was evaluated. The better photosynthesis performance of APX4 plants upon induced photorespiration was associated to enhanced photorespiratory flux and accumulation of chloroplastic antioxidant proteins. Therefore, the present thesis allows the conclusion that the deficiency of APX4 induces a previous signaling that triggers an efficient antioxidant response to peroxisomal H2O2 accumulation by different protective mechanisms. This response protects the photosynthetic apparatus against oxidative damage caused by high H2O2. The results obtained in this work expand the understanding of the role of pAPX and H2O2 signaling in peroxisomes. |
URI: | http://www.repositorio.ufc.br/handle/riufc/36614 |
Appears in Collections: | DBBM - Teses defendidas na UFC |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2018_tese_rhvslima.pdf | 10,98 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.