Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.ufc.br/handle/riufc/32867
Tipo: TCC
Título : Síntese e caracterização de ligas metálicas nanométricas FeNi pelo método sol-gel proteico
Autor : Martins, Adanny Filipe Nogueira
Tutor: Sasaki, José Marcos
Co-asesor: Santos, Cássio Morilla dos
Palabras clave : Método Sol-Gel proteico;Raios X - Difração;Nanopartículas
Fecha de publicación : 2016
Citación : MARTINS, A. F. N. Síntese e caracterização de ligas metálicas nanométricas de FeNi pelo método sol-gel proteico. 2016. 88 f.Trabalho de Conclusão de Curso (Bacharelado em Física) - Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2016.
Resumen en portugués brasileño: Nas últimas décadas, a nanociência tem levado a ciência a revolucionar a área de materiais. As propriedades superparamagnéticas dos nanocristais estão sendo bastante estudadas, devido às suas aplicações nas áreas médicas e biológicas, onde são utilizadas no tratamento do câncer, além de serem importantes vetores de transporte de células, proteínas e medicamentos. O trabalho objetiva à síntese e determinação das propriedades de nanocristais de Ferro-Níquel (FeNi), cuja aplicação mais expressiva é na indústria, onde atua como importante catalisador. O método Sol-Gel proteico é um processo de síntese rápido e economicamente viável, que permite produzir materiais em escala nanométrica com características atualmente muito desejáveis em termos de aplicações. As ligas metálicas produzidas utilizaram nitratos de ferro e níquel, gelatina comestível da marca Gelita como agente precursor e hidrogênio como agente redutor. A calcinação dos xerogéis ocorreu primeiramente em um forno tubular com sistema rotativo acoplado, em 700oC por duas horas com fluxo de ar de 30 mL/min para a oxidação da amostra. E para a redução consequente formação da liga FeNi, realizaram-se séries variando a temperatura (500, 600 e 700oC) e o fluxo de hidrogênio (25, 30, 40 e 50 mL/min). Observou-se a formação da liga pura em todas as séries térmicas à 700oC e para os fluxos de 40 e 50 mL/min aplicados aos materiais reduzidos à 500 e 600oC. A difração de raios X foi utilizada na caracterização das ligas obtidas, identificando as fases presentes em cada amostra. O método Rietveld de refinamento de estrutura foi aplicado, determinando os parâmetros estruturais e microestruturais das amostras. A equação de Scherrer e os métodos gráfico de Williamson-Hall foram utilizados nos cálculos do tamanho de cristalito e a microscopia eletrônica de varredura das características morfológicas dos nanocristais. A magnetometria de amostra vibrante foi utilizada no o estudo das propriedades magnéticas, onde uma variação de campo magnético aplicada ao material a temperatura ambiente determinou a saturação magnética e o campo coercivo. A obtenção dos espectros Mössbauer foram de fundamental importância devido a baixa concentração de fases espúrias contendo o elemento ferro presente na liga que a técnica de difração de raios X não detecta. O método Sol-gel proteico mostrou resultados significativos para a síntese da liga FeNi, que apresentou escala nanométrica, morfologia parcialmente esférica e homogeneidade na distribuição de tamanho de grão, mostrando a eficiência desta rota sintética para obtenção da liga metálica com características expressivas para suas aplicações.
Abstract: In recent decades, nanoscience has led science to revolutionize the field of materials. The superparamagnetic properties of nanocrystals are being widely studied due to their applications in medical and biological areas, which are used in cancer treatment, and are important vectors cell transport, proteins and drugs. The work aims at the synthesis and determination of the nanocrystal properties of iron-nickel (FeNi), whose most significant application is in industry, where it acts as an important catalyst. The protein sol-gel method is a fast synthesis process and economically viable, which allows to produce materials with nanoscale features currently very desirable in terms of applications. Alloys produced used iron and nickel nitrates, edible gelatin Gelita mark as a precursor agent and hydrogen as a reducing agent. The calcining the xerogel occurred primarily in a tubular furnace coupled with rotation, at 700oC for two hours with an air flow of 30 mL/min to oxidize the sample. And reducing subsequent formation of FeNi alloy, series were carried out varying the temperature (500, 600 and 700oC) and hydrogen flow (25, 30, 40 and 50 mL/min). We observed the formation of pure alloy thermal all series at 700oC and for streams 40 and 50 mL/min applied to the material reduced at 500 to 600oC. The X-ray diffraction was used to characterize the obtained alloys, identifying the phases present in each sample. The Rietveld structure refinement was applied, determining the structural and microstructural parameters of the samples. The equation of Scherrer and graphical method of Williamson-Hall were used in the calculations of the crystallite size and scanning electron microscopy of the morphological characteristics of the nanocrystals. The vibrating sample magnetometry was used in the study of magnetic properties, where a magnetic field variation applied to the material at room temperature caused magnetic saturation and coercive field. Obtaining the Mo¨ssbauer spectra were of fundamental importance because of the low concentration of spurious phases containing iron element in the alloy that the technique of X-ray diffraction does not detect. The protein Sol-gel method showed significant results for the synthesis of FeNi alloy, which showed nanoscale spherical partially morphology and homogeneous grain size distribution showing the efficiency of this synthetic route to obtain the alloy with significant features for their application.
URI : http://www.repositorio.ufc.br/handle/riufc/32867
Aparece en las colecciones: FÍSICA-BACHARELADO - Monografias

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
2016_tcc_afnmartins.pdf3,22 MBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.