Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.ufc.br/handle/riufc/31645
Tipo: Artigo de Periódico
Título : A dynamic linear model for the estimation of time-varying origin–destination matrices from link counts
Autor : Pitombeira Neto, Anselmo Ramalho
Loureiro, Carlos Felipe Grangeiro
Palabras clave : Transportes;Modelos lineares (Estatística);Matrizes;Dynamic linear models;Matrices
Fecha de publicación : 2016
Editorial : JOURNAL OF ADVANCED TRANSPORTATION
Citación : PITOMBEIRA NETO, A. R.; LOUREIRO, C. F. G. A dynamic linear model for the estimation of time-varying origin–destination matrices from link counts. J. Adv. Transp., v. 50, p. 2116-2129, 2016.
Abstract: We propose a dynamic linear model (DLM) for the estimation of day-to-day time-varying origin– destination (OD) matrices from link counts. Mean OD flows are assumed to vary over time as a locally constant model. We take into account variability in OD flows, route flows, and link volumes. Given a time series of observed link volumes, sequential Bayesian inference is applied in order to estimate mean OD flows. The conditions under which mean OD flows may be estimated are established, and computational studies on two benchmark transportation networks from the literature are carried out. In both cases, the DLM converged to the unobserved mean OD flows when given sufficient observations of traffic link volumes despite assuming uninformative prior OD matrices. We discuss limitations and extensions of the proposed DLM. Copyright © 2017 John Wiley & Sons, Ltd.
URI : http://www.repositorio.ufc.br/handle/riufc/31645
ISSN : 0197-6729
Aparece en las colecciones: DET - Artigos publicados em revista científica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
2016_art_cfgloureiro_dynamic.pdf719,3 kBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.