Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.ufc.br/handle/riufc/18777
Tipo: Dissertação
Título : S-SWAP: scale-space based workload analysis and prediction
Título en inglés: S-SWAP: scale-space based workload analysis and prediction
Autor : Santos, Gustavo Adolfo Campos dos
Tutor: Machado, Javam de Castro
Co-asesor: Maia, José Gilvan Rodrigues
Palabras clave : Ciência da computação;Workload analysis;Forecast;Scale-space;Computação em nuvem;Análise de séries temporais
Fecha de publicación : 2013
Citación : SANTOS, Gustavo Adolfo Campos dos. S-SWAP: scale-space based workload analysis and prediction. 2013. 99 f. Dissertação (Mestrado em ciência da computação)- Universidade Federal do Ceará, Fortaleza-CE, 2013.
Resumen en portugués brasileño: This work presents a scale-space based approach to assist dynamic resource provisioning. The application of this theory makes it possible to eliminate the presence of irrelevant information from a signal that can potentially induce wrong or late decision making. Dynamic provisioning involves increasing or decreasing the amount of resources allocated to an application in response to workload changes. While monitoring both resource consumption and application-speci c metrics is fundamental in this process since the latter is of great importance to infer information about the former, dealing with these pieces of information to provision resources in dynamic environments poses a big challenge. The presence of unwanted characteristics, or noise, in a signal that represents the monitored metrics favors misleading interpretations and is known to a ect forecast models. Even though some forecast models are robust to noise, reducing its in uence may decrease training time and increase e ciency. Because a dynamic environment demands decision making and predictions on a quickly changing landscape, approximations are necessary. Thus it is important to realize how approximations give rise to limitations in the forecasting process. On the other hand, being aware of when detail is needed, and when it is not, is crucial to perform e cient dynamic forecastings. In a cloud environment, resource provisioning plays a key role for ensuring that providers adequately accomplish their obligation to customers while maximizing the utilization of the underlying infrastructure. Experiments are shown considering simulation of both reactive and proactive strategies scenarios with a real-world trace that corresponds to access rate. Results show that embodying scale-space theory in the decision making stage of dynamic provisioning strategies is very promising. It both improves workload analysis, making it more meaningful to our purposes, and lead to better predictions.
Abstract: This work presents a scale-space based approach to assist dynamic resource provisioning. The application of this theory makes it possible to eliminate the presence of irrelevant information from a signal that can potentially induce wrong or late decision making. Dynamic provisioning involves increasing or decreasing the amount of resources allocated to an application in response to workload changes. While monitoring both resource consumption and application-speci c metrics is fundamental in this process since the latter is of great importance to infer information about the former, dealing with these pieces of information to provision resources in dynamic environments poses a big challenge. The presence of unwanted characteristics, or noise, in a signal that represents the monitored metrics favors misleading interpretations and is known to a ect forecast models. Even though some forecast models are robust to noise, reducing its in uence may decrease training time and increase e ciency. Because a dynamic environment demands decision making and predictions on a quickly changing landscape, approximations are necessary. Thus it is important to realize how approximations give rise to limitations in the forecasting process. On the other hand, being aware of when detail is needed, and when it is not, is crucial to perform e cient dynamic forecastings. In a cloud environment, resource provisioning plays a key role for ensuring that providers adequately accomplish their obligation to customers while maximizing the utilization of the underlying infrastructure. Experiments are shown considering simulation of both reactive and proactive strategies scenarios with a real-world trace that corresponds to access rate. Results show that embodying scale-space theory in the decision making stage of dynamic provisioning strategies is very promising. It both improves workload analysis, making it more meaningful to our purposes, and lead to better predictions.
URI : http://www.repositorio.ufc.br/handle/riufc/18777
Aparece en las colecciones: DCOMP - Dissertações defendidas na UFC

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
2013_dis_gacsantos.pdf3,82 MBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.