Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.ufc.br/handle/riufc/12990
Tipo: Dissertação
Título : Equações diofantinas
Título en inglés: Diofantinas equations
Autor : Freitas, Carlos Wagner Almeida
Tutor: Rogério, José Robério
Palabras clave : Equações diofantinas;Teoria dos números;Máximo divisor comum
Fecha de publicación : 2015
Citación : FREITAS, Carlos Wagner Almeida. Equações diofantinas. 2015. 201 f. Dissertação (Mestrado em Matemática em Rede Nacional) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2015.
Resumen en portugués brasileño: O atual trabalho tem como objetivo principal estruturar estudantes, professores e amantes da matemática para a melhor compreensão, interpretação e resolução de problemas que venham a ser solucionados usando-se as Equações Diofantinas. Para isso, foram usadas técnicas como o uso de inequações e o método paramétrico que são conteúdos estudados pelos professores do Ensino Fundamental e Médio. Também foi utilizada para isso a apresentação de vários exemplos, todos resolvidos, que servirão como objeto de estudo para professores, universitários, estudantes escolares e amantes da matemática. No primeiro capítulo abordaremos os fatos históricos de grandes matemáticos que contribuíram com o desenvolvimento das Equações Diofantinas. Já no segundo capítulo, vamos conhecer melhor a essência da Teoria Elementar dos Números, apresentando, demonstrando e exemplificando as ferramentas matemáticas que serão utilizadas na resolução das Equações Diofantinas. Por fim, no terceiro capítulo, introduziremos as Equações Diofantinas e os métodos de determinação de soluções das mesmas, aplicando-as em situações-problema do cotidiano. A conclusão desse trabalho enfatiza a importância da compreensão algébrica e geométrica das Equações Diofantinas, e que o contato com problemas desta área contribua para que o leitor desenvolva de modo criativo, suas habilidades cognitivas. É importante ressaltar que a introdução à resolução de problemas dessa natureza não necessita dede conhecimentos superiores, podendo ser abordado no Ensino Fundamental e Médio.
Abstract: The current work has as objective main to structuralize students, professors and loving of the mathematics for the best understanding, interpretation and resolution of problems that come to be solved using the Diofantinas Equations. For this, they had been used techniques as the use of inequalities and the parametric method that are contents studied for the professors of Basic and Average Education. Also the presentation of some examples, all decided, that they will serve as object of study for professors, college’s student was used for this, pertaining to school and loving students of the mathematics. In the first chapter we will approach the facts historical of great mathematicians who had contributed with the development of the Diofantinas Equations. No longer according to chapter, we go to better know the essence of the Elementary Theory of the Numbers, presenting, demonstrating and exemplifying the mathematical tools that will be used in the resolution of the Diofantinas Equations. Finally, in the third chapter, we will introduce the Diofantinas Equations and the methods of determination of solutions of the same one, applying them in situation-problem of the daily one. The conclusion of this work emphasizes the importance of the algebraic and geometric understanding of the Diofantinas Equations, and that the contact with problems of this area contributes so that the reader develops in creative way, its cognitive abilities. It is important to stand out that the introduction to the resolution of problems of this nature does not need superior knowledge, being able to be boarded in Basic and Average education.
URI : http://www.repositorio.ufc.br/handle/riufc/12990
Aparece en las colecciones: PROFMAT - Dissertações defendidas na UFC

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
2015_dis_cwafreitas.pdf2,22 MBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.