Please use this identifier to cite or link to this item:
http://repositorio.ufc.br/handle/riufc/8916
Type: | Dissertação |
Title: | Cálculo e aplicações de determinantes |
Title in English: | Calculation and applications of determinants |
Authors: | Marques, Daniel Rodrigues |
Advisor: | Melo, Marcos Ferreira de |
Co-advisor: | Melo, Marcelo Ferreira de |
Keywords: | Determinantes (Matemática);Álgebra linear;Geometria analítica |
Issue Date: | 2014 |
Citation: | MARQUES, Daniel Rodrigues. Cálculo e aplicações de determinantes. 2014. 48 f. Dissertação (Mestrado em Matemática em Rede Nacional) - Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2014. |
Abstract in Brazilian Portuguese: | Este trabalho trata das propriedades e aplicações dos Determinantes reconhecendo-os como uma ferramenta importante para sintetizar a representação e o cálculo de algumas funções e equações na área de Geometria Analítica e Álgebra Linear. Nos primeiros capítulos apresentam-se um pouco da história dos determinantes, os matemáticos que contribuíram na sua evolução e a necessidade que gerou o início do seu estudo. Prossegue-se então, a definição de determinante e o cálculo dos determinantes a partir do teorema de Laplace via recorrência, bem como o dispositivo prático de Sarrus para determinante de terceira ordem. No capítulo seguinte, são apresentadas as propriedades, num total de doze, com suas demonstrações e exemplos, pois elas serão utilizadas nas aplicações dos determinantes. Logo após, apresenta-se uma série de aplicações na área de Álgebra Linear, por exemplo: dependência e independência linear, matriz inversa, solução de sistemas lineares (Regra de Cramer) e produto vetorial; além de aplicações na área de Geometria Analítica, tais como: condição de alinhamento de três pontos, área do paralelogramo e volume do paralelepípedo. Por fim, conclui-se que é fundamental o professor da segunda série do Ensino Médio abordar em suas aulas um pouco da história, chamando a atenção dos alunos para os matemáticos que se destacaram neste estudo; expor as aplicações dos determinantes, despertando a curiosidade de seus alunos e o interesse pela área de Álgebra Linear ou Geometria Analítica. |
Abstract: | This paper deals with the properties and applications of determinants recognizing them as an important tool to synthesize the representation and calculation of some functions and equations in the field of Analytical Geometry and Linear Algebra. In the first chapters we present some of the history of determinants, the mathematicians who contributed in its evolution and the need that generated the beginning of their study. Then we proceed, the definition of determining and calculating the determinants from the theorem of Laplace via recurrence as well as the handy device for determining Sarrus third order. In the next chapter, we present the properties, a total of twelve, with their statements and examples, as they will be used in applications of determinants. Soon after, it presents a number of applications in linear algebra, eg, linear dependence and independence, inverse matrix, solution of linear systems (Cramer's Rule) and cross product; addition to applications in analytical geometry, such as alignment condition of three points of the parallelogram area and volume of the parallelepiped. Finally, it is concluded that it is essential the teacher of the second grade of high school address in their classes a little history, calling students' attention to mathematicians who have excelled in this study; expose the applications of determinants, arousing the curiosity of their students and interest in the area of Linear Algebra and Analytic Geometry. |
URI: | http://www.repositorio.ufc.br/handle/riufc/8916 |
Appears in Collections: | PROFMAT - Dissertações defendidas na UFC |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2014_dis_drmarques.pdf | 1,38 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.